Workforce planning in production with flexible or budgeted employee training and volatile demand

劳动力 培训(气象学) 灵活性(工程) 文件夹 生产(经济) 波动性(金融) 遗忘 产品(数学) 业务 营销 运营管理 经济 微观经济学 财务 数学 经济增长 物理 哲学 气象学 管理 语言学 几何学
作者
Patricia Heuser,Peter Letmathe,Matthias Schinner
出处
期刊:Journal of Business Economics [Springer Science+Business Media]
卷期号:92 (7): 1093-1124 被引量:4
标识
DOI:10.1007/s11573-022-01090-z
摘要

Abstract Companies have to adapt their product portfolio to rapidly changing markets and high demand volatility. As a result, they need to invest in workforce learning and training measures to gain flexibility. Especially during ramp-up phases employees have to adjust their skill set to new production requirements. While traditional employee training models focus on a condensed period of training at the beginning of a production ramp-up, we aim to shed light on the effectiveness of more flexible concepts of training with a general availability of training measures during a product’s life cycle. We budget training in two dimensions, (1) training capacity per period and (2) periods that do not allow training. To analyze the impact of different training scenarios, a multi-period workforce scheduling problem with workers who learn through learning-by-doing and training is considered. The model further incorporates forgetting. We distinguish a flexible and a budgeted training environment. In the budgeted setting, training measures are only available in the first periods of a production ramp-up to a limited extent. Data from a computational study with 600 scenarios and near-optimal solutions are analyzed statistically to derive insights into an employee’s skill development. Overall, we investigate different training strategies under demand volatility and capacity scenarios and analyze the specific outcomes in order to provide managerial implications. Our results indicate that traditional budgeting of training measures has a negative effect on employee learning. The negative impact of budgeting is stronger when production capacity is scarce and demand cannot be fully satisfied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
xiaoqi666发布了新的文献求助10
3秒前
刘柯伶完成签到,获得积分10
3秒前
鲸落发布了新的文献求助10
4秒前
cqnuly发布了新的文献求助10
4秒前
文静的紫萱完成签到,获得积分10
4秒前
JamesPei应助壮观士晋采纳,获得10
4秒前
Vicky7发布了新的文献求助10
5秒前
赵柠檬发布了新的文献求助30
5秒前
妮娜完成签到,获得积分10
5秒前
5秒前
yzy完成签到,获得积分10
5秒前
甜甜的又蓝完成签到 ,获得积分10
5秒前
手工猫发布了新的文献求助50
6秒前
6秒前
6秒前
7秒前
今后应助schun采纳,获得10
7秒前
dengqin完成签到,获得积分10
7秒前
7秒前
小兔发布了新的文献求助10
8秒前
8秒前
多情易蓉发布了新的文献求助10
8秒前
zy完成签到,获得积分10
8秒前
8秒前
bkagyin应助早日毕业佳采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
共享精神应助wyt采纳,获得10
10秒前
Tourist应助科研通管家采纳,获得50
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958492
求助须知:如何正确求助?哪些是违规求助? 3504758
关于积分的说明 11120028
捐赠科研通 3236093
什么是DOI,文献DOI怎么找? 1788616
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802625