Workforce planning in production with flexible or budgeted employee training and volatile demand

劳动力 培训(气象学) 灵活性(工程) 文件夹 生产(经济) 波动性(金融) 遗忘 产品(数学) 业务 营销 运营管理 经济 微观经济学 财务 数学 经济增长 物理 哲学 气象学 管理 语言学 几何学
作者
Patricia Heuser,Peter Letmathe,Matthias Schinner
出处
期刊:Journal of Business Economics [Springer Nature]
卷期号:92 (7): 1093-1124 被引量:4
标识
DOI:10.1007/s11573-022-01090-z
摘要

Abstract Companies have to adapt their product portfolio to rapidly changing markets and high demand volatility. As a result, they need to invest in workforce learning and training measures to gain flexibility. Especially during ramp-up phases employees have to adjust their skill set to new production requirements. While traditional employee training models focus on a condensed period of training at the beginning of a production ramp-up, we aim to shed light on the effectiveness of more flexible concepts of training with a general availability of training measures during a product’s life cycle. We budget training in two dimensions, (1) training capacity per period and (2) periods that do not allow training. To analyze the impact of different training scenarios, a multi-period workforce scheduling problem with workers who learn through learning-by-doing and training is considered. The model further incorporates forgetting. We distinguish a flexible and a budgeted training environment. In the budgeted setting, training measures are only available in the first periods of a production ramp-up to a limited extent. Data from a computational study with 600 scenarios and near-optimal solutions are analyzed statistically to derive insights into an employee’s skill development. Overall, we investigate different training strategies under demand volatility and capacity scenarios and analyze the specific outcomes in order to provide managerial implications. Our results indicate that traditional budgeting of training measures has a negative effect on employee learning. The negative impact of budgeting is stronger when production capacity is scarce and demand cannot be fully satisfied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dudidu完成签到 ,获得积分10
刚刚
1秒前
111发布了新的文献求助10
1秒前
宏hong完成签到,获得积分10
2秒前
归尘应助朱妮妮采纳,获得10
3秒前
memory完成签到 ,获得积分10
4秒前
烟花应助无聊的户名采纳,获得10
4秒前
jinzhen发布了新的文献求助10
4秒前
5秒前
嘻嘻发布了新的文献求助10
5秒前
温暖发布了新的文献求助10
5秒前
简单的听寒完成签到,获得积分10
5秒前
5秒前
7秒前
Yuchaoo发布了新的文献求助30
10秒前
10秒前
烟花应助清爽的芷蕾采纳,获得10
11秒前
bing完成签到,获得积分20
11秒前
11秒前
11秒前
Donnan完成签到,获得积分10
11秒前
佳佳528发布了新的文献求助10
11秒前
喜悦乐巧发布了新的文献求助20
13秒前
13秒前
温暖完成签到,获得积分20
13秒前
Mic应助Doctor异乡人采纳,获得10
16秒前
小蘑菇应助bing采纳,获得10
16秒前
不倒翁发布了新的文献求助10
16秒前
得勿喔发布了新的文献求助10
16秒前
16秒前
黄桂森完成签到,获得积分10
17秒前
善学以致用应助benlaron采纳,获得30
17秒前
17秒前
clare发布了新的文献求助10
17秒前
沉舟完成签到 ,获得积分10
17秒前
思源应助Nature_Science采纳,获得10
18秒前
18秒前
哒哒哒发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132