Workforce planning in production with flexible or budgeted employee training and volatile demand

劳动力 培训(气象学) 灵活性(工程) 文件夹 生产(经济) 波动性(金融) 遗忘 产品(数学) 业务 营销 运营管理 经济 微观经济学 财务 数学 经济增长 物理 哲学 气象学 管理 语言学 几何学
作者
Patricia Heuser,Peter Letmathe,Matthias Schinner
出处
期刊:Journal of Business Economics [Springer Nature]
卷期号:92 (7): 1093-1124 被引量:4
标识
DOI:10.1007/s11573-022-01090-z
摘要

Abstract Companies have to adapt their product portfolio to rapidly changing markets and high demand volatility. As a result, they need to invest in workforce learning and training measures to gain flexibility. Especially during ramp-up phases employees have to adjust their skill set to new production requirements. While traditional employee training models focus on a condensed period of training at the beginning of a production ramp-up, we aim to shed light on the effectiveness of more flexible concepts of training with a general availability of training measures during a product’s life cycle. We budget training in two dimensions, (1) training capacity per period and (2) periods that do not allow training. To analyze the impact of different training scenarios, a multi-period workforce scheduling problem with workers who learn through learning-by-doing and training is considered. The model further incorporates forgetting. We distinguish a flexible and a budgeted training environment. In the budgeted setting, training measures are only available in the first periods of a production ramp-up to a limited extent. Data from a computational study with 600 scenarios and near-optimal solutions are analyzed statistically to derive insights into an employee’s skill development. Overall, we investigate different training strategies under demand volatility and capacity scenarios and analyze the specific outcomes in order to provide managerial implications. Our results indicate that traditional budgeting of training measures has a negative effect on employee learning. The negative impact of budgeting is stronger when production capacity is scarce and demand cannot be fully satisfied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦啦完成签到,获得积分10
1秒前
善学以致用应助zzzz采纳,获得10
1秒前
2秒前
2秒前
Yantuobio完成签到,获得积分10
2秒前
3秒前
3秒前
llq发布了新的文献求助10
3秒前
NexusExplorer应助贾硕士采纳,获得10
3秒前
乌鸦坐飞机完成签到,获得积分10
3秒前
4秒前
4秒前
胖头鱼发布了新的文献求助10
4秒前
科研通AI6应助三石呦423采纳,获得50
4秒前
11关注了科研通微信公众号
4秒前
candleshi发布了新的文献求助10
4秒前
luo发布了新的文献求助10
5秒前
5秒前
5秒前
忧伤的书白完成签到,获得积分10
5秒前
5秒前
赤壁完成签到,获得积分10
6秒前
6秒前
我是老大应助薯片采纳,获得10
6秒前
不可靠大人完成签到,获得积分10
7秒前
121发布了新的文献求助10
7秒前
7秒前
7秒前
iNk应助滚滚采纳,获得10
8秒前
无风发布了新的文献求助10
8秒前
fei应助生信好难采纳,获得20
8秒前
8秒前
大锤完成签到,获得积分10
8秒前
zzzz完成签到,获得积分20
9秒前
钟昊发布了新的文献求助10
9秒前
烟花应助xianbei采纳,获得10
9秒前
9秒前
9秒前
冬青ouo发布了新的文献求助10
10秒前
liwenhao应助qing采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285