Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network

分割 人工智能 雅卡索引 青光眼 眼底(子宫) 卷积神经网络 Sørensen–骰子系数 视盘 计算机科学 模式识别(心理学) 眼科 图像分割 医学
作者
Feng Li,Wenjie Xiang,Lijuan Zhang,Wenzhe Pan,Xuedian Zhang,Minshan Jiang,Haidong Zou
出处
期刊:Eye [Springer Nature]
被引量:1
标识
DOI:10.1038/s41433-022-02055-w
摘要

To develop and validate an end-to-end region-based deep convolutional neural network (R-DCNN) to jointly segment the optic disc (OD) and optic cup (OC) in retinal fundus images for precise cup-to-disc ratio (CDR) measurement and glaucoma screening.In total, 2440 retinal fundus images were retrospectively obtained from 2033 participants. An R-DCNN was presented for joint OD and OC segmentation, where the OD and OC segmentation problems were formulated into object detection problems. We compared R-DCNN's segmentation performance on our in-house dataset with that of four ophthalmologists while performing quantitative, qualitative and generalization analyses on the publicly available both DRISHIT-GS and RIM-ONE v3 datasets. The Dice similarity coefficient (DC), Jaccard coefficient (JC), overlapping error (E), sensitivity (SE), specificity (SP) and area under the curve (AUC) were measured.On our in-house dataset, the proposed model achieved a 98.51% DC and a 97.07% JC for OD segmentation, and a 97.63% DC and a 95.39% JC for OC segmentation, achieving a performance level comparable to that of the ophthalmologists. On the DRISHTI-GS dataset, our approach achieved 97.23% and 94.17% results in DC and JC results for OD segmentation, respectively, while it achieved a 94.56% DC and an 89.92% JC for OC segmentation. Additionally, on the RIM-ONE v3 dataset, our model generated DC and JC values of 96.89% and 91.32% on the OD segmentation task, respectively, whereas the DC and JC values acquired for OC segmentation were 88.94% and 78.21%, respectively.The proposed approach achieved very encouraging performance on the OD and OC segmentation tasks, as well as in glaucoma screening. It has the potential to serve as a useful tool for computer-assisted glaucoma screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
3秒前
慕青应助李朝富采纳,获得10
5秒前
大砍刀完成签到,获得积分10
6秒前
17876581310完成签到,获得积分20
6秒前
7秒前
筱筱潇潇发布了新的文献求助30
9秒前
言不得语发布了新的文献求助10
11秒前
12秒前
13秒前
卡戎529发布了新的文献求助10
15秒前
领导范儿应助zhu采纳,获得10
16秒前
行毅文完成签到,获得积分10
17秒前
自信甜瓜应助皮皮采纳,获得10
18秒前
充电宝应助精明的高跟鞋采纳,获得10
19秒前
ZSJ发布了新的文献求助10
25秒前
思源应助疾风知劲草采纳,获得10
29秒前
30秒前
Akim应助辛勤的灵薇采纳,获得10
30秒前
35秒前
Hello应助微笑的依凝采纳,获得10
35秒前
37秒前
40秒前
我是老大应助sxw采纳,获得10
40秒前
jia发布了新的文献求助10
42秒前
LIN发布了新的文献求助10
43秒前
小黄同学发布了新的文献求助10
44秒前
45秒前
科研通AI2S应助karyoter采纳,获得10
46秒前
哈哈哈发布了新的文献求助10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079