Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network

分割 人工智能 雅卡索引 青光眼 眼底(子宫) 卷积神经网络 Sørensen–骰子系数 视盘 计算机科学 模式识别(心理学) 眼科 图像分割 医学
作者
Feng Li,Wenjie Xiang,Lijuan Zhang,Wenzhe Pan,Xuedian Zhang,Minshan Jiang,Haidong Zou
出处
期刊:Eye [Springer Nature]
被引量:1
标识
DOI:10.1038/s41433-022-02055-w
摘要

To develop and validate an end-to-end region-based deep convolutional neural network (R-DCNN) to jointly segment the optic disc (OD) and optic cup (OC) in retinal fundus images for precise cup-to-disc ratio (CDR) measurement and glaucoma screening.In total, 2440 retinal fundus images were retrospectively obtained from 2033 participants. An R-DCNN was presented for joint OD and OC segmentation, where the OD and OC segmentation problems were formulated into object detection problems. We compared R-DCNN's segmentation performance on our in-house dataset with that of four ophthalmologists while performing quantitative, qualitative and generalization analyses on the publicly available both DRISHIT-GS and RIM-ONE v3 datasets. The Dice similarity coefficient (DC), Jaccard coefficient (JC), overlapping error (E), sensitivity (SE), specificity (SP) and area under the curve (AUC) were measured.On our in-house dataset, the proposed model achieved a 98.51% DC and a 97.07% JC for OD segmentation, and a 97.63% DC and a 95.39% JC for OC segmentation, achieving a performance level comparable to that of the ophthalmologists. On the DRISHTI-GS dataset, our approach achieved 97.23% and 94.17% results in DC and JC results for OD segmentation, respectively, while it achieved a 94.56% DC and an 89.92% JC for OC segmentation. Additionally, on the RIM-ONE v3 dataset, our model generated DC and JC values of 96.89% and 91.32% on the OD segmentation task, respectively, whereas the DC and JC values acquired for OC segmentation were 88.94% and 78.21%, respectively.The proposed approach achieved very encouraging performance on the OD and OC segmentation tasks, as well as in glaucoma screening. It has the potential to serve as a useful tool for computer-assisted glaucoma screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyocici1505完成签到,获得积分10
1秒前
月光族完成签到,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
1秒前
2秒前
李萍萍发布了新的文献求助10
3秒前
Billy完成签到,获得积分10
3秒前
俭朴的玉兰完成签到 ,获得积分10
3秒前
yanjiusheng完成签到,获得积分10
3秒前
Knight完成签到,获得积分10
3秒前
情怀应助homelo采纳,获得10
3秒前
风一样的风干肠完成签到,获得积分10
3秒前
Mansis发布了新的文献求助10
4秒前
王家腾发布了新的文献求助10
4秒前
li完成签到,获得积分10
4秒前
是莉莉娅完成签到,获得积分10
4秒前
5秒前
5秒前
PRUNUS完成签到,获得积分10
6秒前
小星星完成签到,获得积分10
6秒前
7秒前
冷酷哈密瓜完成签到,获得积分10
7秒前
研友_LjDyNZ完成签到,获得积分10
7秒前
鹤鸣霄完成签到,获得积分10
7秒前
小嘉贞完成签到,获得积分10
7秒前
SYLH应助是莉莉娅采纳,获得30
8秒前
qnmlgbd55完成签到,获得积分20
8秒前
安静远航完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
qweerrtt完成签到,获得积分10
8秒前
虎咪咪完成签到,获得积分10
9秒前
初夏完成签到,获得积分10
9秒前
Rice完成签到,获得积分10
9秒前
一只鱼完成签到,获得积分10
9秒前
Ningxin完成签到,获得积分10
9秒前
Laraine发布了新的文献求助10
9秒前
mgg发布了新的文献求助10
10秒前
Thor发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582