Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network

分割 人工智能 雅卡索引 青光眼 眼底(子宫) 卷积神经网络 Sørensen–骰子系数 视盘 计算机科学 模式识别(心理学) 眼科 图像分割 医学
作者
Feng Li,Wenjie Xiang,Lijuan Zhang,Wenzhe Pan,Xuedian Zhang,Minshan Jiang,Haidong Zou
出处
期刊:Eye [Springer Nature]
被引量:1
标识
DOI:10.1038/s41433-022-02055-w
摘要

To develop and validate an end-to-end region-based deep convolutional neural network (R-DCNN) to jointly segment the optic disc (OD) and optic cup (OC) in retinal fundus images for precise cup-to-disc ratio (CDR) measurement and glaucoma screening.In total, 2440 retinal fundus images were retrospectively obtained from 2033 participants. An R-DCNN was presented for joint OD and OC segmentation, where the OD and OC segmentation problems were formulated into object detection problems. We compared R-DCNN's segmentation performance on our in-house dataset with that of four ophthalmologists while performing quantitative, qualitative and generalization analyses on the publicly available both DRISHIT-GS and RIM-ONE v3 datasets. The Dice similarity coefficient (DC), Jaccard coefficient (JC), overlapping error (E), sensitivity (SE), specificity (SP) and area under the curve (AUC) were measured.On our in-house dataset, the proposed model achieved a 98.51% DC and a 97.07% JC for OD segmentation, and a 97.63% DC and a 95.39% JC for OC segmentation, achieving a performance level comparable to that of the ophthalmologists. On the DRISHTI-GS dataset, our approach achieved 97.23% and 94.17% results in DC and JC results for OD segmentation, respectively, while it achieved a 94.56% DC and an 89.92% JC for OC segmentation. Additionally, on the RIM-ONE v3 dataset, our model generated DC and JC values of 96.89% and 91.32% on the OD segmentation task, respectively, whereas the DC and JC values acquired for OC segmentation were 88.94% and 78.21%, respectively.The proposed approach achieved very encouraging performance on the OD and OC segmentation tasks, as well as in glaucoma screening. It has the potential to serve as a useful tool for computer-assisted glaucoma screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棕棕完成签到 ,获得积分10
刚刚
心信鑫发布了新的文献求助10
刚刚
1秒前
李健应助瘦瘦的铅笔采纳,获得10
1秒前
子虚一尘完成签到,获得积分10
1秒前
酷炫幻桃发布了新的文献求助10
1秒前
哈哈Ye完成签到,获得积分20
1秒前
小满发布了新的文献求助10
2秒前
2秒前
lv完成签到,获得积分10
3秒前
3秒前
丰富的冰棍完成签到 ,获得积分10
3秒前
4秒前
4秒前
糖呼噜完成签到,获得积分10
4秒前
4秒前
马麻薯完成签到,获得积分0
5秒前
刘奎冉发布了新的文献求助10
7秒前
卫半山完成签到 ,获得积分10
7秒前
科研通AI6应助crome采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
不想读书发布了新的文献求助10
8秒前
8秒前
8秒前
害怕的雁完成签到,获得积分10
8秒前
SciGPT应助糖呼噜采纳,获得10
8秒前
9秒前
ding发布了新的文献求助10
9秒前
10秒前
爆米花应助wumengxin采纳,获得10
11秒前
东方欲晓完成签到,获得积分10
11秒前
11秒前
打打应助邵珠洋采纳,获得10
12秒前
求助人员发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
sunny完成签到,获得积分10
14秒前
猫的太阳发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537