Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model

数据预处理 计算机科学 人工神经网络 希尔伯特-黄变换 数据挖掘 人工智能 机器学习 Boosting(机器学习) 滤波器(信号处理) 计算机视觉
作者
Yituo Zhang,Chaolin Li,Yiqi Jiang,Lu Sun,Ruobin Zhao,Kefen Yan,Wenhui Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:354: 131724-131724 被引量:137
标识
DOI:10.1016/j.jclepro.2022.131724
摘要

Quickly and accurately grasping the water quality in the drainage network is essential for the management and early warning of the urban water environment. Modeling-based detection methods enable fast and reagent-free water quality detection based on inexpensive multi-source data, which is cleaner and more sustainable than traditional chemical-reaction-based detection methods. But the unsatisfactory accuracy limits their practical application. This study proposes an integrated EMD-LSTM model that combines the data preprocessing module centered on empirical mode decomposition (EMD) and the long short-term memory (LSTM) neural network prediction module to improve the accuracy of the modeling-based detection methods. In the integrated EMD-LSTM model, EMD allows retaining outliers and utilizing data on non-aligned moments, which contributes to capturing data patterns, while powerful nonlinear mapping and learning ability of LSTM neural network enables the time series prediction of water quality. As a result, the EMD-LSTM has achieved the highest R2 values (0.961, 0.9384, 0.9575, 0.9441, 0.9502) and the lowest RMSE values (8.3112, 6.7795, 0.2691, 2.6239, 1.4894) in the prediction of COD, BOD5, TP, TN, NH3–N when compared with the integrated models formed by combining other preprocessing procedures (i.e., traditional operation, short-time Fourier transform) and data-driven forecasting algorithms (i.e., partial least squares regression, gradient boosting regression, deep neural network). This study provides enlightenment for improving the accuracy of modeling-based detection methods, which has driven the development of water quality detection technology towards cleaner and more sustainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性跳跳糖完成签到,获得积分10
刚刚
刚刚
粽子发布了新的文献求助30
1秒前
欧阳正义发布了新的文献求助10
2秒前
MXG关闭了MXG文献求助
4秒前
shyotion发布了新的文献求助10
5秒前
5秒前
笨笨芯发布了新的文献求助30
7秒前
jiangchuansm完成签到,获得积分10
7秒前
7秒前
小熊软糖完成签到 ,获得积分10
8秒前
打打应助shyotion采纳,获得10
10秒前
李健的小迷弟应助枫也采纳,获得10
10秒前
11秒前
wwxxxkkk发布了新的文献求助10
11秒前
无花果应助涵泽采纳,获得10
14秒前
xyx发布了新的文献求助30
14秒前
18秒前
wwxxxkkk完成签到,获得积分10
18秒前
大个应助Skuld采纳,获得10
19秒前
zxy发布了新的文献求助10
21秒前
杨秀玲发布了新的文献求助10
22秒前
23秒前
yx_cheng应助CD5522采纳,获得10
23秒前
随便不放假完成签到 ,获得积分10
24秒前
健忘的不悔完成签到,获得积分20
25秒前
27秒前
涵泽发布了新的文献求助10
27秒前
27秒前
28秒前
29秒前
科研通AI5应助VitoLi采纳,获得10
29秒前
大花卷完成签到,获得积分10
30秒前
bji发布了新的文献求助10
30秒前
田格本完成签到,获得积分10
33秒前
Skuld发布了新的文献求助10
33秒前
翟大有完成签到 ,获得积分0
35秒前
zxy完成签到,获得积分10
36秒前
39秒前
SYLH应助涵泽采纳,获得10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498