Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model

数据预处理 计算机科学 人工神经网络 希尔伯特-黄变换 数据挖掘 人工智能 机器学习 Boosting(机器学习) 滤波器(信号处理) 计算机视觉
作者
Yituo Zhang,Chaolin Li,Yiqi Jiang,Lu Sun,Ruobin Zhao,Kefen Yan,Wenhui Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:354: 131724-131724 被引量:114
标识
DOI:10.1016/j.jclepro.2022.131724
摘要

Quickly and accurately grasping the water quality in the drainage network is essential for the management and early warning of the urban water environment. Modeling-based detection methods enable fast and reagent-free water quality detection based on inexpensive multi-source data, which is cleaner and more sustainable than traditional chemical-reaction-based detection methods. But the unsatisfactory accuracy limits their practical application. This study proposes an integrated EMD-LSTM model that combines the data preprocessing module centered on empirical mode decomposition (EMD) and the long short-term memory (LSTM) neural network prediction module to improve the accuracy of the modeling-based detection methods. In the integrated EMD-LSTM model, EMD allows retaining outliers and utilizing data on non-aligned moments, which contributes to capturing data patterns, while powerful nonlinear mapping and learning ability of LSTM neural network enables the time series prediction of water quality. As a result, the EMD-LSTM has achieved the highest R2 values (0.961, 0.9384, 0.9575, 0.9441, 0.9502) and the lowest RMSE values (8.3112, 6.7795, 0.2691, 2.6239, 1.4894) in the prediction of COD, BOD5, TP, TN, NH3–N when compared with the integrated models formed by combining other preprocessing procedures (i.e., traditional operation, short-time Fourier transform) and data-driven forecasting algorithms (i.e., partial least squares regression, gradient boosting regression, deep neural network). This study provides enlightenment for improving the accuracy of modeling-based detection methods, which has driven the development of water quality detection technology towards cleaner and more sustainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
愤怒的子骞完成签到,获得积分10
1秒前
Emilia完成签到,获得积分10
2秒前
3秒前
烩面大师发布了新的文献求助10
3秒前
鲍binyu完成签到,获得积分10
4秒前
Hello应助猪猪hero采纳,获得10
4秒前
今后应助xiuxiu_27采纳,获得10
5秒前
5秒前
jjy发布了新的文献求助10
5秒前
5秒前
在人类完成签到,获得积分10
5秒前
哈雷彗星完成签到,获得积分10
5秒前
系统提示发布了新的文献求助10
5秒前
luca驳回了Orange应助
6秒前
孙二二完成签到,获得积分10
6秒前
迷人圣诞树很闲完成签到,获得积分10
6秒前
优秀的修洁完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
顺心的惜蕊完成签到,获得积分10
7秒前
7秒前
Lucas应助等待的乐儿采纳,获得10
8秒前
嘉梦完成签到,获得积分10
8秒前
激动的从霜完成签到,获得积分10
8秒前
大门神发布了新的文献求助10
8秒前
思源应助xiaokezhang采纳,获得10
9秒前
10秒前
swsx1317完成签到,获得积分10
10秒前
从容飞凤发布了新的文献求助10
10秒前
皮卡皮卡完成签到 ,获得积分10
11秒前
无花果应助qq小兵采纳,获得10
11秒前
11秒前
1111发布了新的文献求助10
12秒前
小马甲应助bwbw采纳,获得10
13秒前
Zhang发布了新的文献求助10
13秒前
会编程真是太好了完成签到 ,获得积分10
13秒前
哭泣的猕猴桃完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759