Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model

数据预处理 计算机科学 人工神经网络 希尔伯特-黄变换 数据挖掘 人工智能 机器学习 Boosting(机器学习) 滤波器(信号处理) 计算机视觉
作者
Yituo Zhang,Chaolin Li,Yiqi Jiang,Lu Sun,Ruobin Zhao,Kefen Yan,Wenhui Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:354: 131724-131724 被引量:114
标识
DOI:10.1016/j.jclepro.2022.131724
摘要

Quickly and accurately grasping the water quality in the drainage network is essential for the management and early warning of the urban water environment. Modeling-based detection methods enable fast and reagent-free water quality detection based on inexpensive multi-source data, which is cleaner and more sustainable than traditional chemical-reaction-based detection methods. But the unsatisfactory accuracy limits their practical application. This study proposes an integrated EMD-LSTM model that combines the data preprocessing module centered on empirical mode decomposition (EMD) and the long short-term memory (LSTM) neural network prediction module to improve the accuracy of the modeling-based detection methods. In the integrated EMD-LSTM model, EMD allows retaining outliers and utilizing data on non-aligned moments, which contributes to capturing data patterns, while powerful nonlinear mapping and learning ability of LSTM neural network enables the time series prediction of water quality. As a result, the EMD-LSTM has achieved the highest R2 values (0.961, 0.9384, 0.9575, 0.9441, 0.9502) and the lowest RMSE values (8.3112, 6.7795, 0.2691, 2.6239, 1.4894) in the prediction of COD, BOD5, TP, TN, NH3–N when compared with the integrated models formed by combining other preprocessing procedures (i.e., traditional operation, short-time Fourier transform) and data-driven forecasting algorithms (i.e., partial least squares regression, gradient boosting regression, deep neural network). This study provides enlightenment for improving the accuracy of modeling-based detection methods, which has driven the development of water quality detection technology towards cleaner and more sustainable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偷狗的小月亮完成签到,获得积分10
刚刚
liusu完成签到,获得积分10
刚刚
刚刚
1秒前
自由的银耳汤关注了科研通微信公众号
1秒前
科研dddog完成签到,获得积分10
1秒前
深情安青应助黑猫警长采纳,获得10
2秒前
bkagyin应助yyyyyyf采纳,获得10
2秒前
科研通AI2S应助友宝小丸子采纳,获得10
2秒前
Jasper应助简单的皮皮虾采纳,获得10
3秒前
realeagle发布了新的文献求助10
4秒前
5秒前
SciGPT应助CD采纳,获得10
6秒前
7秒前
Valky发布了新的文献求助10
8秒前
美丽怜容发布了新的文献求助20
8秒前
黄耀完成签到,获得积分10
9秒前
xddll完成签到 ,获得积分10
9秒前
lk完成签到,获得积分20
10秒前
天天快乐应助辣辣采纳,获得10
10秒前
在研之上发布了新的文献求助10
10秒前
苏南完成签到 ,获得积分10
10秒前
10秒前
搜集达人应助淡淡成危采纳,获得10
11秒前
rosalieshi应助小卡啦采纳,获得20
11秒前
Fuao完成签到,获得积分10
15秒前
15秒前
上官若男应助aliime采纳,获得10
16秒前
orixero应助BEN采纳,获得10
17秒前
17秒前
小菜菜完成签到,获得积分20
18秒前
彭于晏应助沉默钢笔采纳,获得10
19秒前
顾矜应助脚踏实地呢采纳,获得10
21秒前
22秒前
英姑应助和谐的傲儿采纳,获得10
22秒前
九九九完成签到,获得积分10
22秒前
LEU发布了新的文献求助10
22秒前
ok123完成签到 ,获得积分10
24秒前
24秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449