Generative Adversarial Networks in Medical Image augmentation: A review

计算机科学 集合(抽象数据类型) 生成语法 图像(数学) 对抗制 人工智能 领域(数学) 机器学习 深度学习 图像处理 功能(生物学) 图像质量 数据科学 情报检索 数据挖掘 数学 生物 进化生物学 程序设计语言 纯数学
作者
Yizhou Chen,Xu-Hua Yang,Zihan Wei,Ali Asghar Heidari,Nenggan Zheng,Zhicheng Li,Huiling Chen,Haigen Hu,Qianwei Zhou,Qiu Guan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105382-105382 被引量:215
标识
DOI:10.1016/j.compbiomed.2022.105382
摘要

With the development of deep learning, the number of training samples for medical image-based diagnosis and treatment models is increasing. Generative Adversarial Networks (GANs) have attracted attention in medical image processing due to their excellent image generation capabilities and have been widely used in data augmentation. In this paper, a comprehensive and systematic review and analysis of medical image augmentation work are carried out, and its research status and development prospects are reviewed.This paper reviews 105 medical image augmentation related papers, which mainly collected by ELSEVIER, IEEE Xplore, and Springer from 2018 to 2021. We counted these papers according to the parts of the organs corresponding to the images, and sorted out the medical image datasets that appeared in them, the loss function in model training, and the quantitative evaluation metrics of image augmentation. At the same time, we briefly introduce the literature collected in three journals and three conferences that have received attention in medical image processing.First, we summarize the advantages of various augmentation models, loss functions, and evaluation metrics. Researchers can use this information as a reference when designing augmentation tasks. Second, we explore the relationship between augmented models and the amount of the training set, and tease out the role that augmented models may play when the quality of the training set is limited. Third, the statistical number of papers shows that the development momentum of this research field remains strong. Furthermore, we discuss the existing limitations of this type of model and suggest possible research directions.We discuss GAN-based medical image augmentation work in detail. This method effectively alleviates the challenge of limited training samples for medical image diagnosis and treatment models. It is hoped that this review will benefit researchers interested in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lifangqi发布了新的文献求助10
1秒前
3秒前
5秒前
miao发布了新的文献求助10
6秒前
天上的云在偷偷看你完成签到 ,获得积分10
7秒前
CFF发布了新的文献求助10
9秒前
likemangren完成签到,获得积分10
9秒前
13秒前
15秒前
乐乐应助柳斯凌采纳,获得10
16秒前
16秒前
wanci应助zhangjingchang采纳,获得10
16秒前
17秒前
18秒前
miao完成签到,获得积分10
18秒前
tmobiusx发布了新的文献求助30
19秒前
超级大饼完成签到,获得积分10
20秒前
20秒前
vvsunjx发布了新的文献求助10
21秒前
诱阙寰完成签到,获得积分10
22秒前
fmwang完成签到,获得积分10
23秒前
24秒前
24秒前
Georges-09完成签到,获得积分10
25秒前
Jasper应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Anivia2015完成签到,获得积分10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得30
26秒前
老詹头应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
zyfqpc应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
甩看文献发布了新的文献求助10
28秒前
啊啊啊完成签到 ,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905