Vision-aware air-ground cooperative target localization for UAV and UGV

无人地面车辆 计算机科学 过程(计算) 人工智能 计算机视觉 背景(考古学) 特征(语言学) 微型飞行器 工程类 航空航天工程 空气动力学 语言学 生物 操作系统 哲学 古生物学
作者
Daqian Liu,Weidong Bao,Xiaomin Zhu,Bowen Fei,Zhenliang Xiao,Tong Men
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:124: 107525-107525 被引量:37
标识
DOI:10.1016/j.ast.2022.107525
摘要

In the moving target localization, due to the influence of image distortion on unmanned aerial vehicle (UAV) and the limitation of field of vision on unmanned ground vehicle (UGV), the localization accuracy of single domain is low. Therefore, the air-ground cooperation has become a new trend and inevitable choice for the target localization. In this context, the accurate recognition and organization cooperation are the essential but challenging tasks. This study devotes to improving the capability of air-ground cooperative target localization by the multi-feature fusion recognition in the outdoor environment. To be specific, a novel cooperative architecture is designed to control the observation locations of the UAV and the UGV throughout the localization process. For the heterogeneity of Unmanned Vehicle (UV), we creatively introduce the target recognition rate of the UGV as decision factor and use the target motion property to guarantee the accuracy of the target localization. Based on this architecture, we propose a BidiRectional feedbAck VErification algorithm, BRAVE, whose includes multi-layer decision to ensure that each UV can be in the optimal location for positioning the target, the proposed BRAVE skillfully integrates both the target recognition and cooperation decision. To demonstrate the superiority of our method, we devise several groups of experiments to analyze the performance of BRAVE in the outdoor environment. The experimental results demonstrate that the localization error of BRAVE is only 1.61 m. Moreover, the accuracy is also improved by 0.5 m compared with the air-air cooperation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮色陈陈发布了新的文献求助10
1秒前
Yxy2021完成签到 ,获得积分10
2秒前
吴下阿龙发布了新的文献求助20
4秒前
端庄白易完成签到,获得积分10
5秒前
6秒前
6秒前
9秒前
tangyuyi完成签到,获得积分10
9秒前
9秒前
lejunia发布了新的文献求助50
10秒前
liweivvvvv完成签到,获得积分10
11秒前
12秒前
CipherSage应助帅气书白采纳,获得10
12秒前
ChenXinde完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
18秒前
微笑荟完成签到 ,获得积分10
18秒前
陌上花开完成签到,获得积分0
19秒前
科研通AI6.2应助NEU_HMY采纳,获得10
19秒前
小熊天天学习完成签到 ,获得积分10
20秒前
20秒前
milly发布了新的文献求助10
21秒前
只喝怡宝发布了新的文献求助10
22秒前
22秒前
祖小凝发布了新的文献求助10
22秒前
24秒前
ZORROR发布了新的文献求助10
25秒前
CipherSage应助lejunia采纳,获得10
26秒前
26秒前
慕青应助lejunia采纳,获得10
26秒前
fanhaomeng发布了新的文献求助10
28秒前
只喝怡宝完成签到,获得积分20
29秒前
Ava应助ZORROR采纳,获得10
30秒前
篇篇高分发布了新的文献求助10
30秒前
小冉不熬夜完成签到 ,获得积分10
31秒前
31秒前
35秒前
小苹果汤完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874805
求助须知:如何正确求助?哪些是违规求助? 6510728
关于积分的说明 15675172
捐赠科研通 4992381
什么是DOI,文献DOI怎么找? 2691139
邀请新用户注册赠送积分活动 1633514
关于科研通互助平台的介绍 1591186