化学
苯乙酮
立体化学
还原酶
三氟甲基
辅因子
突变体
生物催化
酶
氧化还原酶
生物化学
催化作用
有机化学
反应机理
基因
烷基
作者
Jun Li,Tung Dinh,Robert S. Phillips
标识
DOI:10.1016/j.abb.2022.109158
摘要
Carbonyl reductase from Leifsonia xyli (LXCAR, UniProtKB - T2FLN4) can stereoselectively catalyze the reduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) to its corresponding alcohol, (R)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((R)-BTPE), which is a valuable chiral intermediate for the synthesis of antiemetic drugs, Aprepitant and Fosaprepitant. Moreover, this protein was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters. Even though molecular modelling of this protein was done by Wang et al. (2014), a crystal structure has not yet obtained. In this study, a single mutant, S154Y, which was shown to have higher catalytic activity toward BTAP than that of the wild type, was overexpressed in Escherichia coli BL21 (DE3), purified, and crystallized. The crystal structure of LXCAR-S154Y explains how the mutant enzyme can work with BTAP more efficiently than wild type carbonyl reductase. Furthermore, the structure explains why LXCAR-S154Y can use either NADH or NADPH efficiently as a cofactor, as well as elucidates a proton relay system present in the enzyme.
科研通智能强力驱动
Strongly Powered by AbleSci AI