Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking

小桶 计算生物学 对接(动物) 交互网络 药理学 系统药理学 化学 生物 药品 医学 基因 生物化学 基因表达 转录组 护理部
作者
Ying Wang,Yuan Yuan,Wenting Wang,Ying He,Hong Zhong,Zhou Xiaoxia,Yong Chen,Xinjun Cai,Liqin Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105454-105454 被引量:86
标识
DOI:10.1016/j.compbiomed.2022.105454
摘要

Qingfeiyin (QFY) is a common Chinese herbal formula for the treatment of acute lung injury (ALI). However, its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of QFY in ALI using network pharmacology and molecular docking. Active compounds and targets of QFY were obtained from TCMSP and TCMID. ALI-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, and TTD databases. A protein–protein interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein–compound complexes obtained by molecular docking. In total, 128 active compounds and 121 targets of QFY were identified. A topological analysis of the PPI network revealed 13 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of QFY are mediated by genes related to inflammation, apoptosis, and oxidative stress as well as the MAPK and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets. This study successfully predict the effective components and potential targets and pathways involved in the treatment of ALI for QFY. We provided a novel strategy for future research of molecular mechanisms of QFY in ALI treatment. Moreover, the potential active ingredients provide a reliable source for drug screening for ALI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dby完成签到 ,获得积分10
刚刚
ppprotein完成签到,获得积分10
1秒前
vincent发布了新的文献求助30
1秒前
Freja发布了新的文献求助10
2秒前
顾矜应助小L采纳,获得10
2秒前
GodMG完成签到,获得积分10
2秒前
谨慎的映寒完成签到,获得积分10
2秒前
HCF完成签到,获得积分10
3秒前
3秒前
英俊的铭应助顺利毕业采纳,获得10
3秒前
bc完成签到,获得积分10
4秒前
4秒前
科研狗发布了新的文献求助10
5秒前
充电宝应助希光光采纳,获得10
5秒前
Eatch应助丹丹采纳,获得10
5秒前
lan完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
赵纤完成签到,获得积分10
7秒前
小二郎应助忆茶戏采纳,获得10
7秒前
自信眼睛发布了新的文献求助10
7秒前
小二郎应助洁净的代容采纳,获得10
8秒前
xiaooooo完成签到,获得积分20
8秒前
8秒前
递年完成签到 ,获得积分10
8秒前
8秒前
年轻小甜瓜完成签到 ,获得积分10
9秒前
9秒前
Nara2021完成签到,获得积分10
9秒前
帅哥牛紫完成签到,获得积分10
9秒前
jingjing完成签到,获得积分10
9秒前
lan发布了新的文献求助10
10秒前
sara完成签到,获得积分10
10秒前
李健的小迷弟应助Elian采纳,获得10
11秒前
奋斗大葡萄完成签到,获得积分10
11秒前
xiaooooo发布了新的文献求助10
11秒前
冷静幻悲发布了新的文献求助10
12秒前
自由莺发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812