A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分20
1秒前
华仔应助一起去看海采纳,获得10
2秒前
乐乐应助郭子仪采纳,获得10
2秒前
HAOHAO发布了新的文献求助10
3秒前
隐形的雁完成签到,获得积分10
6秒前
只与你完成签到 ,获得积分10
7秒前
8秒前
传奇3应助怡然的扬采纳,获得10
9秒前
9秒前
一起去看海完成签到,获得积分20
9秒前
9秒前
ccm应助清脆琳采纳,获得10
9秒前
NexusExplorer应助果果采纳,获得10
10秒前
13秒前
xmhxpz发布了新的文献求助10
14秒前
DSFSD完成签到,获得积分10
17秒前
17秒前
进口小宵完成签到,获得积分10
19秒前
优秀藏鸟完成签到 ,获得积分10
21秒前
22秒前
泷生发布了新的文献求助10
22秒前
22秒前
23秒前
不配.应助MADAO采纳,获得200
23秒前
24秒前
三月完成签到,获得积分20
25秒前
cizzz发布了新的文献求助10
28秒前
果果发布了新的文献求助10
29秒前
29秒前
29秒前
Criminology34应助nadeem采纳,获得10
31秒前
英俊的铭应助Tom47采纳,获得10
31秒前
33秒前
王小茗发布了新的文献求助10
34秒前
暗中讨饭完成签到,获得积分10
35秒前
Vincent发布了新的文献求助10
36秒前
科研通AI6应助长大水果采纳,获得10
36秒前
37秒前
等待冰之完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432