亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧野牧完成签到,获得积分10
6秒前
ljl86400完成签到,获得积分10
10秒前
12秒前
Owen应助Dingding采纳,获得10
16秒前
小jie发布了新的文献求助10
17秒前
12完成签到 ,获得积分10
27秒前
小jie完成签到,获得积分10
34秒前
ajing完成签到,获得积分10
51秒前
小二郎应助小jie采纳,获得10
57秒前
OhHH完成签到 ,获得积分10
1分钟前
shier完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助木子采纳,获得10
1分钟前
周炎发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
2分钟前
fft完成签到,获得积分10
2分钟前
狂野的衬衫完成签到,获得积分10
2分钟前
Dingding发布了新的文献求助10
2分钟前
dahua完成签到 ,获得积分10
2分钟前
2分钟前
程大学发布了新的文献求助10
2分钟前
Dingding关注了科研通微信公众号
2分钟前
程大学完成签到,获得积分10
2分钟前
程大学驳回了ZJX应助
2分钟前
3分钟前
思源应助fft采纳,获得10
3分钟前
yys发布了新的文献求助10
3分钟前
打打应助yys采纳,获得10
3分钟前
wearelulu完成签到,获得积分10
3分钟前
3分钟前
sjj发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
在水一方应助sjj采纳,获得10
3分钟前
饼干肥熊完成签到 ,获得积分10
3分钟前
4分钟前
Paris发布了新的文献求助10
4分钟前
shencheng完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148266
求助须知:如何正确求助?哪些是违规求助? 4344641
关于积分的说明 13529679
捐赠科研通 4186621
什么是DOI,文献DOI怎么找? 2295762
邀请新用户注册赠送积分活动 1296179
关于科研通互助平台的介绍 1239953