A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助伞下铭采纳,获得10
刚刚
科研通AI6应助伞下铭采纳,获得10
刚刚
CipherSage应助干净的友卉采纳,获得10
刚刚
dada完成签到 ,获得积分10
1秒前
1秒前
科研小卡拉米完成签到,获得积分10
2秒前
SciGPT应助CHINA_C13采纳,获得10
2秒前
orixero应助CHINA_C13采纳,获得10
2秒前
CodeCraft应助CHINA_C13采纳,获得150
2秒前
科研通AI6应助CHINA_C13采纳,获得150
2秒前
科研通AI6应助CHINA_C13采纳,获得10
2秒前
科研通AI6应助CHINA_C13采纳,获得150
2秒前
小羊先生完成签到 ,获得积分10
2秒前
云游归尘发布了新的文献求助10
3秒前
小童发布了新的文献求助10
3秒前
饱满以松完成签到 ,获得积分10
3秒前
3秒前
4秒前
平平发布了新的文献求助10
4秒前
凶狠的储发布了新的文献求助10
4秒前
冰菱完成签到,获得积分10
4秒前
Owen应助碎碎采纳,获得10
4秒前
warithy发布了新的文献求助10
5秒前
Ethanyoyo0917完成签到,获得积分10
5秒前
Ava应助优雅的老姆采纳,获得10
5秒前
liekkas发布了新的文献求助10
5秒前
6秒前
小赵发布了新的文献求助30
7秒前
背包包包应助知性的雅彤采纳,获得10
7秒前
8秒前
DHY发布了新的文献求助10
8秒前
疯狂的问枫完成签到,获得积分20
9秒前
李健应助warithy采纳,获得10
9秒前
9秒前
10秒前
睿洁洁发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
元气马完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002