A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nostalgia发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
小小户完成签到 ,获得积分10
刚刚
will发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
苏su发布了新的文献求助10
1秒前
希望天下0贩的0应助sunlt采纳,获得30
1秒前
1秒前
轩洛完成签到,获得积分10
2秒前
瑞克八代完成签到,获得积分10
2秒前
tdtk发布了新的文献求助10
2秒前
Brendan完成签到,获得积分10
2秒前
淘宝叮咚完成签到,获得积分10
2秒前
Hilda007应助666采纳,获得10
3秒前
无畏完成签到,获得积分10
3秒前
3秒前
Raven应助一米采纳,获得10
4秒前
4秒前
斯文败类应助碧蓝的夏天采纳,获得10
4秒前
TZMY完成签到,获得积分10
4秒前
hgc发布了新的文献求助10
4秒前
高挑的保温杯完成签到,获得积分10
4秒前
小二郎应助温暖的问寒采纳,获得10
4秒前
coco完成签到,获得积分10
4秒前
leemonster完成签到,获得积分10
4秒前
迷途羔羊完成签到,获得积分10
4秒前
Jiuu完成签到,获得积分10
5秒前
SciGPT应助李白白采纳,获得10
5秒前
5秒前
111发布了新的文献求助20
5秒前
善学以致用应助nostalgia采纳,获得30
5秒前
6秒前
勤奋雨完成签到,获得积分10
6秒前
CodeCraft应助月月猪采纳,获得30
6秒前
fff完成签到,获得积分10
6秒前
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337659
求助须知:如何正确求助?哪些是违规求助? 4474834
关于积分的说明 13926106
捐赠科研通 4369836
什么是DOI,文献DOI怎么找? 2401032
邀请新用户注册赠送积分活动 1394060
关于科研通互助平台的介绍 1365964