A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fatcat完成签到,获得积分10
1秒前
S月小小发布了新的文献求助10
2秒前
自觉书琴完成签到 ,获得积分10
5秒前
番茄豆丁完成签到 ,获得积分10
6秒前
vicky完成签到 ,获得积分10
8秒前
甜甜友容完成签到,获得积分10
11秒前
高无怨发布了新的文献求助10
16秒前
和谐的醉山完成签到,获得积分0
18秒前
言者完成签到 ,获得积分10
20秒前
20秒前
震速流完成签到 ,获得积分10
20秒前
满当当完成签到 ,获得积分10
20秒前
21秒前
猪猪hero发布了新的文献求助10
23秒前
百里瓶窑发布了新的文献求助10
25秒前
25秒前
lxh完成签到 ,获得积分10
27秒前
简单发布了新的文献求助10
27秒前
X_Nano发布了新的文献求助10
28秒前
29秒前
百里瓶窑完成签到,获得积分10
33秒前
缓慢耳机发布了新的文献求助10
33秒前
温暖完成签到 ,获得积分10
34秒前
OIC完成签到,获得积分10
35秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
LPPQBB应助科研通管家采纳,获得100
36秒前
tuanheqi应助科研通管家采纳,获得150
36秒前
jszz应助科研通管家采纳,获得20
36秒前
36秒前
了尘应助科研通管家采纳,获得10
36秒前
nanfeng完成签到 ,获得积分10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
Smar_zcl应助科研通管家采纳,获得100
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
我是老大应助科研通管家采纳,获得20
36秒前
36秒前
riccixuu完成签到 ,获得积分10
38秒前
不要慌完成签到 ,获得积分10
38秒前
郭1994完成签到 ,获得积分10
45秒前
yuyeqing完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304355
求助须知:如何正确求助?哪些是违规求助? 4450919
关于积分的说明 13850072
捐赠科研通 4337904
什么是DOI,文献DOI怎么找? 2381702
邀请新用户注册赠送积分活动 1376728
关于科研通互助平台的介绍 1343825