A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小姑不在完成签到,获得积分10
刚刚
张佳盈发布了新的文献求助10
刚刚
烂漫念文发布了新的文献求助10
1秒前
吕健完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
ZHANGJUN完成签到,获得积分10
1秒前
彭于晏应助chenshinkirou采纳,获得10
1秒前
嘿嘿哒完成签到 ,获得积分10
2秒前
暮封完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
orange完成签到,获得积分20
2秒前
qew完成签到,获得积分10
2秒前
2秒前
2秒前
那一年的河川完成签到,获得积分10
3秒前
Akim应助周可以采纳,获得10
3秒前
zouzuhao发布了新的文献求助10
3秒前
柏白筠完成签到,获得积分10
3秒前
若离发布了新的文献求助10
4秒前
4秒前
4秒前
小鱼儿发布了新的文献求助10
4秒前
仲滋滋完成签到,获得积分10
5秒前
大个应助yulong采纳,获得10
5秒前
脑洞疼应助咿呀咿呀哟采纳,获得10
5秒前
贰陆发布了新的文献求助10
5秒前
grace完成签到 ,获得积分10
5秒前
DR_HE关注了科研通微信公众号
6秒前
Ava应助星星采纳,获得30
6秒前
6秒前
wxq发布了新的文献求助10
6秒前
7秒前
qii发布了新的文献求助10
7秒前
7秒前
Akim应助小瞎鱼采纳,获得30
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435610
求助须知:如何正确求助?哪些是违规求助? 4547679
关于积分的说明 14210287
捐赠科研通 4467942
什么是DOI,文献DOI怎么找? 2448805
邀请新用户注册赠送积分活动 1439683
关于科研通互助平台的介绍 1416287