A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的龙猫完成签到,获得积分10
刚刚
共产主义接班人完成签到,获得积分10
1秒前
平常幻灵完成签到,获得积分20
1秒前
1秒前
Benji发布了新的文献求助20
1秒前
无花果应助niko采纳,获得10
1秒前
Akim应助niko采纳,获得10
1秒前
科研通AI2S应助niko采纳,获得10
1秒前
Never stall发布了新的文献求助10
1秒前
脑洞疼应助niko采纳,获得10
1秒前
桐桐应助niko采纳,获得10
1秒前
打打应助niko采纳,获得10
1秒前
李健的粉丝团团长应助niko采纳,获得10
1秒前
慕青应助niko采纳,获得10
1秒前
烟花应助niko采纳,获得10
2秒前
李健应助niko采纳,获得10
2秒前
今后应助archaea采纳,获得10
2秒前
Jasper应助嘀嘀嘀采纳,获得10
2秒前
3秒前
科研通AI6应助11采纳,获得10
3秒前
思源应助王易云采纳,获得10
3秒前
丘比特应助阔达的太阳采纳,获得10
3秒前
4秒前
星辰大海应助wanci采纳,获得10
4秒前
大模型应助鄢亮采纳,获得10
4秒前
玖念发布了新的文献求助10
5秒前
北洛呀洛北完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
面包小狗发布了新的文献求助10
5秒前
彭于晏应助秦磊采纳,获得10
5秒前
Akim应助Cattleya采纳,获得30
5秒前
6秒前
6秒前
coc发布了新的文献求助10
6秒前
CharlotteBlue完成签到,获得积分0
6秒前
脑洞疼应助裴裴采纳,获得10
6秒前
甜甜圈完成签到,获得积分10
6秒前
9391发布了新的文献求助10
6秒前
6秒前
草壁米完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049