A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
思源应助Hazelwf采纳,获得10
3秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
3秒前
迷路竹完成签到,获得积分10
3秒前
shanyuyulai完成签到 ,获得积分10
4秒前
领导范儿应助juqiu采纳,获得10
4秒前
璐璐完成签到,获得积分10
4秒前
4秒前
LJL完成签到,获得积分20
5秒前
兔子完成签到,获得积分10
5秒前
super chan发布了新的文献求助10
6秒前
drwlr发布了新的文献求助10
7秒前
Owen应助5114采纳,获得10
9秒前
gong完成签到,获得积分10
9秒前
1212发布了新的文献求助10
9秒前
小田完成签到 ,获得积分10
10秒前
依依发布了新的文献求助10
11秒前
小蘑菇应助陈泽宇采纳,获得10
15秒前
15秒前
PhDLi完成签到,获得积分10
16秒前
buno应助小马采纳,获得10
16秒前
fuiee完成签到,获得积分10
17秒前
蓝天应助麻辣小龙虾采纳,获得10
17秒前
11235完成签到,获得积分10
17秒前
袁同学完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
jg发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
脑洞疼应助11235采纳,获得10
22秒前
胖大星发布了新的文献求助80
22秒前
Liu完成签到 ,获得积分10
22秒前
哇哦发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851