A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还没有发布了新的文献求助20
1秒前
2秒前
cookingmouse发布了新的文献求助10
2秒前
专注的曼寒完成签到 ,获得积分10
3秒前
段dwh完成签到,获得积分10
3秒前
lycoris发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
5秒前
Xieyusen发布了新的文献求助10
6秒前
kiki发布了新的文献求助10
6秒前
8秒前
Mic应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得20
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
可颂完成签到 ,获得积分10
9秒前
无花果应助科研通管家采纳,获得20
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
欣喜高丽应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
笨鸟先飞完成签到 ,获得积分10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
ffff发布了新的文献求助10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
10秒前
欣喜高丽应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414