已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕玖淇完成签到 ,获得积分10
1秒前
小张完成签到 ,获得积分10
2秒前
TIDUS完成签到,获得积分10
3秒前
头上有犄角bb完成签到 ,获得积分10
5秒前
5秒前
莫寻双完成签到,获得积分10
7秒前
7秒前
元儿圆发布了新的文献求助10
9秒前
科研通AI6应助Nikki采纳,获得10
10秒前
大学生完成签到 ,获得积分10
11秒前
a36380382完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
肉肉完成签到 ,获得积分10
14秒前
随机科研完成签到,获得积分10
15秒前
TiAmo完成签到 ,获得积分10
15秒前
16秒前
大方芷文发布了新的文献求助20
17秒前
Dear77完成签到,获得积分10
18秒前
18秒前
清爽乐菱发布了新的文献求助30
18秒前
TIDUS完成签到,获得积分10
19秒前
59发布了新的文献求助10
20秒前
畅快枕头完成签到 ,获得积分0
20秒前
秋老众少年完成签到 ,获得积分10
22秒前
哲别发布了新的文献求助10
23秒前
drwzm完成签到 ,获得积分10
23秒前
Intjer发布了新的文献求助10
24秒前
26秒前
勤恳冰淇淋完成签到 ,获得积分10
28秒前
29秒前
净坛使者完成签到,获得积分10
31秒前
wangyan发布了新的文献求助30
32秒前
木习习完成签到,获得积分10
33秒前
虚幻笑晴发布了新的文献求助10
33秒前
喝橙汁儿吗完成签到 ,获得积分10
34秒前
aki应助xaoi采纳,获得10
35秒前
蘑菇完成签到 ,获得积分10
36秒前
Jasper应助zzyfsh采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511