亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new approach for data augmentation in a deep neural network to implement a monitoring system for detecting prostate cancer in MRI images1

预处理器 计算机科学 人工智能 深度学习 混淆矩阵 卷积神经网络 模式识别(心理学) 数据预处理 过程(计算) 人工神经网络 原始数据 癌症 计算机视觉 医学 内科学 程序设计语言 操作系统
作者
Neda Pirzad Mashak,Gholamreza Akbarizadeh,Ebrahim Farshidi
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2283-2298 被引量:1
标识
DOI:10.3233/jifs-212990
摘要

Prostate cancer is one of the most common cancers in men, which takes many victims every year due to its latent symptoms. Thus, early diagnosis of the extent of the lesion can help the physician and the patient in the treatment process. Nowadays, detection and labeling of objects in medical images has become especially important. In this article, the prostate gland is first detected in T2 W MRI images by the Faster R-CNN network based on the AlexNet architecture and separated from the rest of the image. Using the Faster R-CNN network in the separation phase, the accuracy will increase as this network is a model of CNN-based target detection networks and is functionally coordinated with the subsequent CNN network. Meanwhile, the problem of insufficient data with the data augmentation method was corrected in the preprocessing stage, for which different filters were used. Use of different filters to increase the data instead of the usual augmentation methods would eliminate the preprocessing stage. Also, with the presence of raw images in the next steps, it was proven that there was no need for a preprocessing step and the main images could also be the input data. By eliminating the preprocessing step, the response speed increased. Then, in order to classify benign and malignant cancer images, two deep learning architectures were used under the supervision of ResNet18 and GoogleNet. Then, by calculating the Confusion Matrix parameters and drawing the ROC diagram, the capability of this process was measured. By obtaining Accuracy = 95.7%, DSC = 96.77% and AUC = 99.17%, The results revealed that this method could outperform other well-known methods in this field (DSC = 95%) and (AUC = 91%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
NexusExplorer应助MCC采纳,获得10
刚刚
刚刚
合一海盗完成签到,获得积分10
1秒前
汉堡包应助药石无医采纳,获得10
4秒前
4秒前
科研通AI6应助woleaisa采纳,获得10
6秒前
鼠牛虎兔发布了新的文献求助10
6秒前
11秒前
搜集达人应助清新的苑博采纳,获得10
14秒前
无花果应助明明子采纳,获得10
14秒前
14秒前
药石无医发布了新的文献求助10
15秒前
eve完成签到 ,获得积分10
15秒前
wangyue完成签到 ,获得积分10
15秒前
早睡早起发布了新的文献求助10
19秒前
26秒前
29秒前
jetwang发布了新的文献求助10
29秒前
小二郎应助弋沨采纳,获得10
34秒前
34秒前
熊噗噗完成签到,获得积分10
35秒前
小学生的练习簿完成签到,获得积分0
38秒前
jyy完成签到,获得积分10
42秒前
打打应助jetwang采纳,获得10
43秒前
51秒前
55秒前
55秒前
Hhhhh发布了新的文献求助10
55秒前
甜美的秋尽完成签到,获得积分10
55秒前
希望天下0贩的0应助九三采纳,获得10
57秒前
丘比特应助renjijiefuli采纳,获得50
58秒前
MCC发布了新的文献求助10
59秒前
科研通AI6应助Hhhhh采纳,获得10
1分钟前
勤恳的寻菡完成签到,获得积分10
1分钟前
英俊的铭应助张文凯采纳,获得10
1分钟前
xxxxxxxxx完成签到 ,获得积分10
1分钟前
江枫渔火VC完成签到 ,获得积分10
1分钟前
MCC完成签到,获得积分20
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502565
求助须知:如何正确求助?哪些是违规求助? 4598381
关于积分的说明 14463990
捐赠科研通 4531972
什么是DOI,文献DOI怎么找? 2483748
邀请新用户注册赠送积分活动 1466952
关于科研通互助平台的介绍 1439587