亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

39P OLIMPIA dataset: Radiomics to predict outcomes in EGFR-mutant non-small cell lung cancer

医学 奥西默替尼 无线电技术 肺癌 肿瘤科 内科学 酪氨酸激酶 无进展生存期 癌症 埃罗替尼 总体生存率 放射科 表皮生长因子受体 受体
作者
G. Pérez,J.N. Minatta,Martina Aineseder,Candelaria Mosquera,Sonia Benítez
出处
期刊:Annals of Oncology [Elsevier]
卷期号:33: S18-S18
标识
DOI:10.1016/j.annonc.2022.01.048
摘要

Non-small cell lung cancer (NSCLC) with a detectable EGFR mutation represents up to 50% of cases depending on the geographic area. There are currently 5 approved tyrosine kinase inhibitors (TKI), including first, second, and third generations. Although osimertinib is currently the standard of care, cost-effectiveness could be improved by identifying patients who will present longer progression-free survival with more accessible treatments. We propose a non-invasive approach to identify risk of progression based on imaging biomarkers (radiomics) from the pre-treatment CT scan. We included 60 histologically proven cases of NSCLC with confirmed EGFR mutations. We evaluated progression at 12-months after starting TKI therapy: 32 patients showed disease progression and 28 did not. We manually segmented lesions in pre-treatment CT scans and extracted radiomic features. We applied machine learning techniques for dimensionality reduction and classification of patient outcomes. We compared the predictive power of this radiomics model to a logistic regression model trained solely on clinical data: gender, age, and smoking status. We used cross validation to calculate diagnostic metrics, reported as mean ± std. The final radiomics model is an ensemble of 12 classifiers trained with 20 features from principal component analysis. For the prediction of disease progression, the radiomics model showed a sensitivity of 0.84 ± 0.12, specificity 0.70 ± 0.41, positive predictive value 0.79 ± 0.23 and negative predictive value 0.67 ± 0.39. Comparing radiomics to the regression with clinical data, they showed respectively an area under the ROC curve of 0.82 ± 0.15 vs. 0.39 ± 0.11, and an area under the precision-recall curve of 0.82 ± 0.18 vs. 0.52 ± 0.13. This suggests that the radiomics model has stronger predictive power than basic clinical data. Up to date, there is no publicly available dataset to target this issue. No previous work has addressed this problem in Latin American populations. Our results are presented as a baseline and we plan to release publicly the current dataset to motivate further studies on this topic. These results suggest that radiomics is a promising approach to predict progression in patients treated with TKI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Magan采纳,获得10
2秒前
2秒前
Iron_five完成签到 ,获得积分10
6秒前
紫色翡翠完成签到,获得积分10
7秒前
8秒前
9秒前
18秒前
Owen应助waayu采纳,获得10
24秒前
Magan完成签到,获得积分10
26秒前
27秒前
29秒前
归海浩阑完成签到,获得积分10
31秒前
32秒前
酷炫白筠发布了新的文献求助10
34秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
谦让小松鼠完成签到 ,获得积分10
39秒前
ataybabdallah完成签到,获得积分10
40秒前
圈圈完成签到 ,获得积分10
41秒前
44秒前
酷炫白筠完成签到,获得积分20
45秒前
梁朝伟发布了新的文献求助10
50秒前
51秒前
52秒前
55秒前
小于一完成签到 ,获得积分10
55秒前
勤劳乘云完成签到,获得积分10
1分钟前
情怀应助做实验的蘑菇采纳,获得10
1分钟前
上官若男应助tsing采纳,获得10
1分钟前
Beyond完成签到,获得积分10
1分钟前
Suliove完成签到,获得积分10
1分钟前
1分钟前
奋斗凝蝶发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
waayu发布了新的文献求助10
1分钟前
张宝完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964462
关于积分的说明 8613781
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953