39P OLIMPIA dataset: Radiomics to predict outcomes in EGFR-mutant non-small cell lung cancer

医学 奥西默替尼 无线电技术 肺癌 肿瘤科 内科学 酪氨酸激酶 无进展生存期 癌症 埃罗替尼 总体生存率 放射科 表皮生长因子受体 受体
作者
G. Pérez,J.N. Minatta,Martina Aineseder,Candelaria Mosquera,Sonia Benítez
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33: S18-S18
标识
DOI:10.1016/j.annonc.2022.01.048
摘要

Non-small cell lung cancer (NSCLC) with a detectable EGFR mutation represents up to 50% of cases depending on the geographic area. There are currently 5 approved tyrosine kinase inhibitors (TKI), including first, second, and third generations. Although osimertinib is currently the standard of care, cost-effectiveness could be improved by identifying patients who will present longer progression-free survival with more accessible treatments. We propose a non-invasive approach to identify risk of progression based on imaging biomarkers (radiomics) from the pre-treatment CT scan. We included 60 histologically proven cases of NSCLC with confirmed EGFR mutations. We evaluated progression at 12-months after starting TKI therapy: 32 patients showed disease progression and 28 did not. We manually segmented lesions in pre-treatment CT scans and extracted radiomic features. We applied machine learning techniques for dimensionality reduction and classification of patient outcomes. We compared the predictive power of this radiomics model to a logistic regression model trained solely on clinical data: gender, age, and smoking status. We used cross validation to calculate diagnostic metrics, reported as mean ± std. The final radiomics model is an ensemble of 12 classifiers trained with 20 features from principal component analysis. For the prediction of disease progression, the radiomics model showed a sensitivity of 0.84 ± 0.12, specificity 0.70 ± 0.41, positive predictive value 0.79 ± 0.23 and negative predictive value 0.67 ± 0.39. Comparing radiomics to the regression with clinical data, they showed respectively an area under the ROC curve of 0.82 ± 0.15 vs. 0.39 ± 0.11, and an area under the precision-recall curve of 0.82 ± 0.18 vs. 0.52 ± 0.13. This suggests that the radiomics model has stronger predictive power than basic clinical data. Up to date, there is no publicly available dataset to target this issue. No previous work has addressed this problem in Latin American populations. Our results are presented as a baseline and we plan to release publicly the current dataset to motivate further studies on this topic. These results suggest that radiomics is a promising approach to predict progression in patients treated with TKI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
sanyecai完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
淡定访琴完成签到,获得积分10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
SCINEXUS应助科研通管家采纳,获得100
1秒前
思源应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
HarryYang完成签到 ,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
1+1应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
34Kenny应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
隐形的谷槐完成签到 ,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
1+1应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
香蕉觅云应助高兴123采纳,获得30
3秒前
1+1应助科研通管家采纳,获得10
3秒前
hugoh发布了新的文献求助10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
4秒前
範範完成签到,获得积分10
4秒前
研友_Z119gZ完成签到 ,获得积分10
4秒前
wuxunxun2015完成签到,获得积分10
6秒前
liuww0778完成签到 ,获得积分10
7秒前
7秒前
AlvinCZY发布了新的文献求助20
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093