39P OLIMPIA dataset: Radiomics to predict outcomes in EGFR-mutant non-small cell lung cancer

医学 奥西默替尼 无线电技术 肺癌 肿瘤科 内科学 酪氨酸激酶 无进展生存期 癌症 埃罗替尼 总体生存率 放射科 表皮生长因子受体 受体
作者
G. Pérez,J.N. Minatta,Martina Aineseder,Candelaria Mosquera,Sonia Benítez
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33: S18-S18
标识
DOI:10.1016/j.annonc.2022.01.048
摘要

Non-small cell lung cancer (NSCLC) with a detectable EGFR mutation represents up to 50% of cases depending on the geographic area. There are currently 5 approved tyrosine kinase inhibitors (TKI), including first, second, and third generations. Although osimertinib is currently the standard of care, cost-effectiveness could be improved by identifying patients who will present longer progression-free survival with more accessible treatments. We propose a non-invasive approach to identify risk of progression based on imaging biomarkers (radiomics) from the pre-treatment CT scan. We included 60 histologically proven cases of NSCLC with confirmed EGFR mutations. We evaluated progression at 12-months after starting TKI therapy: 32 patients showed disease progression and 28 did not. We manually segmented lesions in pre-treatment CT scans and extracted radiomic features. We applied machine learning techniques for dimensionality reduction and classification of patient outcomes. We compared the predictive power of this radiomics model to a logistic regression model trained solely on clinical data: gender, age, and smoking status. We used cross validation to calculate diagnostic metrics, reported as mean ± std. The final radiomics model is an ensemble of 12 classifiers trained with 20 features from principal component analysis. For the prediction of disease progression, the radiomics model showed a sensitivity of 0.84 ± 0.12, specificity 0.70 ± 0.41, positive predictive value 0.79 ± 0.23 and negative predictive value 0.67 ± 0.39. Comparing radiomics to the regression with clinical data, they showed respectively an area under the ROC curve of 0.82 ± 0.15 vs. 0.39 ± 0.11, and an area under the precision-recall curve of 0.82 ± 0.18 vs. 0.52 ± 0.13. This suggests that the radiomics model has stronger predictive power than basic clinical data. Up to date, there is no publicly available dataset to target this issue. No previous work has addressed this problem in Latin American populations. Our results are presented as a baseline and we plan to release publicly the current dataset to motivate further studies on this topic. These results suggest that radiomics is a promising approach to predict progression in patients treated with TKI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚奇完成签到,获得积分10
2秒前
珍珠火龙果完成签到 ,获得积分10
4秒前
儒雅路人完成签到,获得积分10
4秒前
hhm完成签到,获得积分10
4秒前
小李完成签到 ,获得积分10
5秒前
huahua完成签到 ,获得积分10
6秒前
Ricardo完成签到 ,获得积分10
7秒前
轻松元绿完成签到 ,获得积分10
9秒前
jkaaa完成签到,获得积分10
10秒前
陈豆豆完成签到 ,获得积分10
11秒前
氯吡格雷完成签到 ,获得积分10
12秒前
zxt完成签到,获得积分10
12秒前
行云流水完成签到,获得积分10
14秒前
阡陌完成签到,获得积分0
16秒前
满意人英完成签到,获得积分10
17秒前
大气夜山完成签到 ,获得积分10
18秒前
Sindy完成签到,获得积分10
21秒前
wdd完成签到 ,获得积分10
23秒前
愉快无心完成签到 ,获得积分10
25秒前
淀粉肠完成签到 ,获得积分10
25秒前
愉快的犀牛完成签到 ,获得积分10
25秒前
26秒前
Zhusy完成签到 ,获得积分10
27秒前
27秒前
lx完成签到,获得积分10
28秒前
我是老大应助科研通管家采纳,获得10
29秒前
Xiaoxiao应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得20
30秒前
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
MQQ完成签到 ,获得积分10
32秒前
络桵完成签到,获得积分10
32秒前
曦夜发布了新的文献求助10
32秒前
狂野未来发布了新的文献求助150
37秒前
闻巷雨完成签到 ,获得积分10
39秒前
hebhm完成签到,获得积分10
39秒前
star完成签到,获得积分10
41秒前
41秒前
活力老少女完成签到 ,获得积分10
41秒前
steven完成签到 ,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664