强化学习
计算机科学
控制器(灌溉)
控制理论(社会学)
任务(项目管理)
职位(财务)
点(几何)
机器人
跟踪(教育)
人工智能
平面的
增强学习
功能(生物学)
过程(计算)
控制(管理)
控制工程
工程类
数学
操作系统
心理学
教育学
几何学
系统工程
财务
计算机图形学(图像)
进化生物学
农学
经济
生物
作者
Caner Sancak,Fatma Yamac,Mehmet İtik
出处
期刊:Robotica
[Cambridge University Press]
日期:2022-03-17
卷期号:40 (10): 3378-3395
被引量:10
标识
DOI:10.1017/s0263574722000273
摘要
Abstract This study proposes a method based on reinforcement learning (RL) for point-to-point and dynamic reference position tracking control of a planar cable-driven parallel robots, which is a multi-input multi-output system (MIMO). The method eliminates the use of a tension distribution algorithm in controlling the system’s dynamics and inherently optimizes the cable tensions based on the reward function during the learning process. The deep deterministic policy gradient algorithm is utilized for training the RL agents in point-to-point and dynamic reference tracking tasks. The performances of the two agents are tested on their specifically trained tasks. Moreover, we also implement the agent trained for point-to-point tasks on the dynamic reference tracking and vice versa. The performances of the RL agents are compared with a classical PD controller. The results show that RL can perform quite well without the requirement of designing different controllers for each task if the system’s dynamics is learned well.
科研通智能强力驱动
Strongly Powered by AbleSci AI