Prediction of Peak Ground Acceleration by Artificial Neural Network and Adaptive Neuro-fuzzy Inference System

自适应神经模糊推理系统 人工神经网络 峰值地面加速度 加速度 推理系统 地震震级 衰减 地震学 地震灾害 计算机科学 神经模糊 地质学
作者
Elcin Gok,Ilknur Kaftan
出处
期刊:Annals of Geophysics [Instituto Nazionale di Geofisica e Vulcanologia, INGV]
卷期号:65 (1): SE106-SE106
标识
DOI:10.4401/ag-8659
摘要

An attenuation relationship model belonging to a region with a high earthquake hazard is important. It is used for engineering studies to know how the peak ground acceleration (PGA) value depends on the distance where there are no stations. This study used earthquakes with magnitudes greater than 4 that IzmirNET recorded between 2009 and 2017 to determine the PGA through an artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), which are widely applied in engineering seismology studies. For this purpose, 2925 records from 62 earthquakes were analysed in the ANN and ANFIS applications. Magnitude, focal depth, hypocentral distance (Rhyp), and site conditions comprise the inputs, and PGA values are the outputs. Using the Karaburun earthquake, we compared the ANN and ANFIS models using different ground motion prediction equations (GMPE) and the appropriate criteria. We determined the proximate values to PGA values measured at IzmirNET stations of the Karaburun earthquake, which was M = 6.2 in 2017, were used to test the ANN and ANFIS. The results were examined and indicated that the ANN and ANFIS are good candidates for obtaining PGA values for future earthquakes in the studied area. In addition, the PGA values of subsequent earthquakes can be calculated more quickly without any preliminary evaluation using an ANN and ANFIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一叶知秋完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
tianzml0应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Lvhao应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
tianzml0应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
OYRKYORK发布了新的文献求助10
6秒前
漂亮幻莲完成签到,获得积分10
7秒前
莫里亚蒂完成签到,获得积分10
8秒前
思源应助林夕采纳,获得10
8秒前
magic发布了新的文献求助10
8秒前
没想好完成签到 ,获得积分10
8秒前
xu发布了新的文献求助10
9秒前
漂亮幻莲发布了新的文献求助10
9秒前
莫里亚蒂发布了新的文献求助10
10秒前
欧阳枫完成签到 ,获得积分10
12秒前
Jasper应助善良的沛山采纳,获得10
12秒前
婷婷应助morii采纳,获得10
13秒前
14秒前
研友_VZG7GZ应助magic采纳,获得10
16秒前
希望天下0贩的0应助风yiya采纳,获得10
17秒前
科研通AI2S应助xu采纳,获得10
17秒前
18秒前
威武鞅完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228