Polysomnographic identification of anxiety and depression using deep learning

焦虑 萧条(经济学) 多导睡眠图 心理学 精神科 人工智能 临床心理学 计算机科学 脑电图 宏观经济学 经济
作者
Tushar P. Thakre,Hemant Kulkarni,Katie S. Adams,Ryan Mischel,Ronnie Hayes,Ananda K. Pandurangi
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:150: 54-63 被引量:8
标识
DOI:10.1016/j.jpsychires.2022.03.027
摘要

Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌晓啸完成签到,获得积分10
刚刚
XXX完成签到,获得积分10
刚刚
黄迪迪完成签到 ,获得积分10
2秒前
Owen应助playgirl02采纳,获得10
2秒前
含糊的文涛完成签到,获得积分10
4秒前
鱼鳞飞飞完成签到,获得积分20
4秒前
成就的道天完成签到,获得积分10
4秒前
宇文雅琴完成签到,获得积分10
5秒前
6秒前
wanjingwan完成签到 ,获得积分10
7秒前
人生苦短发布了新的文献求助10
8秒前
popo发布了新的文献求助10
12秒前
breaking完成签到,获得积分10
13秒前
Huang完成签到 ,获得积分0
14秒前
呆萌从蓉发布了新的文献求助10
15秒前
害羞的山晴完成签到,获得积分10
17秒前
Zachary完成签到,获得积分10
18秒前
清脆的秋寒完成签到,获得积分10
19秒前
小陈要发SCI完成签到 ,获得积分10
20秒前
ASZXDW应助认真的寒香采纳,获得10
21秒前
FashionBoy应助xxs采纳,获得10
21秒前
Singularity应助木头人呐采纳,获得10
22秒前
ZS完成签到,获得积分10
22秒前
Jack完成签到,获得积分10
24秒前
25秒前
25秒前
Mississippiecho完成签到,获得积分10
26秒前
很勇敢yu完成签到,获得积分10
27秒前
巫青丝完成签到,获得积分10
28秒前
29秒前
Gleaming完成签到,获得积分10
29秒前
大个应助小田采纳,获得10
30秒前
巫青丝发布了新的文献求助10
31秒前
33秒前
科研通AI2S应助popo采纳,获得10
34秒前
36秒前
人生苦短完成签到,获得积分10
36秒前
金www完成签到 ,获得积分10
36秒前
999完成签到,获得积分10
37秒前
小佛爷完成签到 ,获得积分10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165024
求助须知:如何正确求助?哪些是违规求助? 2816112
关于积分的说明 7911373
捐赠科研通 2475753
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370