已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Polysomnographic identification of anxiety and depression using deep learning

焦虑 萧条(经济学) 多导睡眠图 心理学 精神科 人工智能 临床心理学 计算机科学 脑电图 宏观经济学 经济
作者
Tushar P. Thakre,Hemant Kulkarni,Katie S. Adams,Ryan Mischel,Ronnie Hayes,Ananda K. Pandurangi
出处
期刊:Journal of Psychiatric Research [Elsevier BV]
卷期号:150: 54-63 被引量:10
标识
DOI:10.1016/j.jpsychires.2022.03.027
摘要

Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏满天完成签到 ,获得积分10
刚刚
钱仙人完成签到,获得积分10
1秒前
liuyanq完成签到,获得积分10
1秒前
科研小白发布了新的文献求助10
1秒前
赵坤煊完成签到 ,获得积分10
3秒前
Husayn发布了新的文献求助10
3秒前
song发布了新的文献求助10
4秒前
ganjqly应助段盈采纳,获得20
5秒前
大胆隶完成签到,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
U9A发布了新的文献求助20
11秒前
Zz发布了新的文献求助10
11秒前
13秒前
农夫完成签到,获得积分0
13秒前
段盈完成签到,获得积分10
15秒前
16秒前
ruochenzu完成签到,获得积分10
16秒前
意昂发布了新的文献求助10
19秒前
19秒前
无花果应助nhh采纳,获得10
19秒前
乔治哇完成签到 ,获得积分10
20秒前
ruochenzu发布了新的文献求助10
20秒前
21秒前
在水一方应助jiabaoyu采纳,获得10
22秒前
风清扬应助Steven采纳,获得30
22秒前
搜集达人应助Hawaii采纳,获得30
23秒前
bkagyin应助可耐的青雪采纳,获得10
25秒前
26秒前
Dr_Zhao发布了新的文献求助10
26秒前
554802336应助自由的小鸟采纳,获得30
27秒前
29秒前
Zz发布了新的文献求助10
30秒前
nhh发布了新的文献求助10
32秒前
jiabaoyu发布了新的文献求助10
33秒前
Hann发布了新的文献求助10
35秒前
38秒前
夏紊完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
40秒前
木木完成签到,获得积分10
42秒前
大模型应助lzx采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555