Polysomnographic identification of anxiety and depression using deep learning

焦虑 萧条(经济学) 多导睡眠图 心理学 精神科 人工智能 临床心理学 计算机科学 脑电图 宏观经济学 经济
作者
Tushar P. Thakre,Hemant Kulkarni,Katie S. Adams,Ryan Mischel,Ronnie Hayes,Ananda K. Pandurangi
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:150: 54-63 被引量:15
标识
DOI:10.1016/j.jpsychires.2022.03.027
摘要

Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助keke采纳,获得10
1秒前
还行吧完成签到 ,获得积分10
2秒前
俏皮的安萱完成签到 ,获得积分10
3秒前
材袅完成签到,获得积分10
4秒前
7秒前
盐焗鱼丸完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
keke完成签到,获得积分10
12秒前
TNU发布了新的文献求助10
12秒前
13秒前
Bob发布了新的文献求助10
13秒前
16秒前
hilbet发布了新的文献求助10
18秒前
李琦完成签到 ,获得积分10
19秒前
auggy发布了新的文献求助10
19秒前
Bob完成签到,获得积分10
19秒前
21秒前
淡然葶完成签到 ,获得积分10
22秒前
23秒前
笨笨念文完成签到 ,获得积分10
26秒前
28秒前
35秒前
Cik完成签到,获得积分10
35秒前
Xjx6519发布了新的文献求助10
38秒前
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
Orange应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
无花果应助科研通管家采纳,获得20
38秒前
浮游应助科研通管家采纳,获得10
38秒前
Owen应助科研通管家采纳,获得10
38秒前
Mic应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
Zx_1993应助科研通管家采纳,获得20
38秒前
华仔应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523