Polysomnographic identification of anxiety and depression using deep learning

焦虑 萧条(经济学) 多导睡眠图 心理学 精神科 人工智能 临床心理学 计算机科学 脑电图 宏观经济学 经济
作者
Tushar P. Thakre,Hemant Kulkarni,Katie S. Adams,Ryan Mischel,Ronnie Hayes,Ananda K. Pandurangi
出处
期刊:Journal of Psychiatric Research [Elsevier BV]
卷期号:150: 54-63 被引量:10
标识
DOI:10.1016/j.jpsychires.2022.03.027
摘要

Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆鹅喵喵完成签到,获得积分10
刚刚
沐沐完成签到,获得积分10
刚刚
小易发布了新的文献求助10
2秒前
今后应助科研通管家采纳,获得10
5秒前
HAL应助科研通管家采纳,获得10
5秒前
Dean应助科研通管家采纳,获得50
5秒前
高高应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
6秒前
今后应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
sleepingfish应助科研通管家采纳,获得20
6秒前
fd163c应助科研通管家采纳,获得10
6秒前
小青椒应助科研通管家采纳,获得20
6秒前
HAL应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
小青椒应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
故意的鼠标完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
晓先森完成签到,获得积分10
10秒前
FashionBoy应助deway采纳,获得10
10秒前
qwer给qwer的求助进行了留言
13秒前
13秒前
Sun完成签到,获得积分10
14秒前
15秒前
埃特纳氏完成签到 ,获得积分10
17秒前
枕星发布了新的文献求助10
18秒前
18秒前
NXK发布了新的文献求助10
18秒前
LYC完成签到,获得积分10
19秒前
坤类化合物完成签到 ,获得积分10
20秒前
22秒前
boom完成签到,获得积分10
22秒前
大方百招完成签到,获得积分10
23秒前
lwl完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910842
求助须知:如何正确求助?哪些是违规求助? 4186455
关于积分的说明 12999825
捐赠科研通 3954044
什么是DOI,文献DOI怎么找? 2168261
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909