重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Polysomnographic identification of anxiety and depression using deep learning

焦虑 萧条(经济学) 多导睡眠图 心理学 精神科 人工智能 临床心理学 计算机科学 脑电图 宏观经济学 经济
作者
Tushar P. Thakre,Hemant Kulkarni,Katie S. Adams,Ryan Mischel,Ronnie Hayes,Ananda K. Pandurangi
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:150: 54-63 被引量:15
标识
DOI:10.1016/j.jpsychires.2022.03.027
摘要

Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默己发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
樊念烟发布了新的文献求助10
1秒前
希望天下0贩的0应助Miracle采纳,获得10
1秒前
Jasper应助长风采纳,获得10
1秒前
可爱的函函应助长风采纳,获得10
2秒前
握瑾怀瑜完成签到 ,获得积分0
3秒前
3秒前
呆鸥完成签到,获得积分10
3秒前
怕孤单的若颜完成签到,获得积分10
4秒前
Jasper应助feihu采纳,获得10
4秒前
null发布了新的文献求助10
5秒前
ruixuekuangben完成签到,获得积分0
6秒前
6秒前
淡然芝完成签到,获得积分10
7秒前
7秒前
左一酱发布了新的文献求助10
7秒前
pigzhu完成签到,获得积分10
7秒前
Morii完成签到,获得积分10
8秒前
烟花应助猪头采纳,获得10
8秒前
朴素绿真完成签到,获得积分10
8秒前
浮游应助科研菜鸡采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
14秒前
14秒前
科研通AI6应助幽默尔蓝采纳,获得10
14秒前
14秒前
15秒前
leeSongha完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516