Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst

介质阻挡放电 降级(电信) 催化作用 体积流量 化学 氧气 分析化学(期刊) 等离子体 化学工程 色谱法 材料科学 电极 有机化学 电气工程 工程类 物理化学 物理 量子力学
作者
Kun Yang,Hongwei Shen,Yueyue Liu,Yang Liu,Pingji Ge,Dezheng Yang
出处
期刊:Plasma Science & Technology [IOP Publishing]
卷期号:24 (9): 095504-095504 被引量:4
标识
DOI:10.1088/2058-6272/ac6d41
摘要

Abstract Recently, a plasma catalyst was employed to efficiently degrade antibiotic residues in the environment. In this study, the plasma generated in a packed bed dielectric barrier reactor combined with TiO 2 catalyst is used to degrade the antibiotic tiamulin (TIA) loaded on the surface of simulated soil particles. The effects of applied voltage, composition of the working gas, gas flow rate and presence or absence of catalyst on the degradation effect were studied. It was found that plasma and catalyst can produce a synergistic effect under optimal conditions (applied voltage 25 kV, oxygen ratio 1%, gas flow rate 0.6 l min −1 , treatment time 5 min). The degradation efficiency of the plasma combined with catalyst can reach 78.6%, which is 18.4% higher than that of plasma without catalyst. When the applied voltage is 30 kV, the gas flow rate is 1 l min −1 , the oxygen ratio is 1% and the plasma combined with TiO 2 catalyst treats the sample for 5 min the degradation efficiency of TIA reached 97%. It can be concluded that a higher applied voltage and longer processing times not only lead to more degradation but also result in a lower energy efficiency. Decreasing the oxygen ratio and gas flow rate could improve the degradation efficiency. The relative distribution and identity of the major TIA degradation product generated was determined by high-performance liquid chromatography–mass spectrometry analysis. The mechanism of TIA removal by plasma and TiO 2 catalyst was analyzed, and the possible degradation path is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞溪灵完成签到 ,获得积分10
2秒前
玖玖柒idol完成签到,获得积分10
2秒前
曌虞完成签到,获得积分10
2秒前
3秒前
啥,这都是啥完成签到,获得积分10
3秒前
皮皮桂发布了新的文献求助10
4秒前
5秒前
大大发布了新的文献求助10
5秒前
6秒前
orixero应助wang1090采纳,获得30
8秒前
8秒前
l11x29发布了新的文献求助10
10秒前
lin完成签到,获得积分10
10秒前
大侠发布了新的文献求助10
11秒前
11秒前
是锦锦呀完成签到,获得积分10
11秒前
11秒前
李秋静发布了新的文献求助10
12秒前
zhen发布了新的文献求助50
14秒前
是锦锦呀发布了新的文献求助60
14秒前
Khr1stINK发布了新的文献求助10
16秒前
17秒前
NexusExplorer应助Dddd采纳,获得10
19秒前
19秒前
Akim应助zhaowenxian采纳,获得10
20秒前
谦让的鹏煊完成签到,获得积分10
21秒前
zccc完成签到 ,获得积分10
22秒前
23秒前
hhzz发布了新的文献求助10
24秒前
坚定的雁完成签到 ,获得积分10
25秒前
26秒前
两先生完成签到 ,获得积分10
26秒前
豆dou发布了新的文献求助10
26秒前
丘比特应助SS采纳,获得10
27秒前
27秒前
瑶一瑶完成签到,获得积分10
27秒前
接受所有饼干完成签到,获得积分10
27秒前
富贵儿完成签到,获得积分10
28秒前
MHB应助Khr1stINK采纳,获得10
28秒前
cinderella完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808