Functional Brain Network Classification Based on Deep Graph Hashing Learning

散列函数 计算机科学 人工智能 深度学习 图形 模式识别(心理学) 功能磁共振成像 机器学习 理论计算机科学 神经科学 生物 计算机安全
作者
Junzhong Ji,Yaqin Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2891-2902 被引量:13
标识
DOI:10.1109/tmi.2022.3173428
摘要

Brain network classification using resting-state functional magnetic resonance imaging (rs-fMRI) is an effective analytical method for diagnosing brain diseases. In recent years, brain network classification methods based on deep learning have attracted increasing attention. However, these methods only consider the spatial topological characteristics of the brain network but ignore its proximity relationships in semantic space. To overcome this problem, we propose a novel brain network classification method based on deep graph hashing learning named BNC-DGHL. Specifically, we first extract the deep features of the brain network and then learn a graph hash function based on clinical phenotype labels and the similarity of diagnostic labels. Secondly, we use the learned graph hash function to convert deep features into hash codes, which can maintain the original semantic spatial relationships. Finally, we calculate the distance between hash codes to obtain the predicted category of the brain network. Experimental results on ABIDE I, ABIDE II, and ADHD-200 datasets demonstrate that our method achieves better classification performance of brain diseases compared with some state-of-the-art methods, and the abnormal functional connectivities between brain regions identified may serve as biomarkers associated with related brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小虫完成签到,获得积分10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
Xiaoxiao应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Qiang应助科研通管家采纳,获得50
1秒前
Owen应助科研通管家采纳,获得10
1秒前
64658应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
第一百零一个完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
李勍应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
黄晟原发布了新的文献求助10
3秒前
zzzz应助科研通管家采纳,获得10
3秒前
4秒前
miaomiao发布了新的文献求助30
4秒前
浮游应助港崽宝宝采纳,获得10
5秒前
wang发布了新的文献求助10
5秒前
ding应助123采纳,获得10
6秒前
可乐全糖微冰完成签到,获得积分10
7秒前
7秒前
7秒前
smile发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061155
求助须知:如何正确求助?哪些是违规求助? 4285295
关于积分的说明 13353883
捐赠科研通 4103069
什么是DOI,文献DOI怎么找? 2246464
邀请新用户注册赠送积分活动 1252142
关于科研通互助平台的介绍 1182988