A comparative study of oil paintings and Chinese ink paintings on composition

绘画 作文(语言) 油画 相似性(几何) 艺术 视觉艺术 计算机科学 人工智能 文学类 图像(数学)
作者
Zhen-Bao Fan,Yuxian Zhu,Slobodan Marković,Kang Zhang
出处
期刊:The Visual Computer [Springer Nature]
被引量:1
标识
DOI:10.1007/s00371-022-02408-2
摘要

In this study, we compare Western oil paintings and Chinese ink paintings on their composition, by extracting and computing 28 composition features of the paintings, including visual balance and relationships between different regions (segments). Among the extracted segments, we compute average distance and rule-based features based on three layout rules, rule of thirds, golden mean and golden triangle. A total of 2253 paintings including 1138 oil paintings and 1115 Chinese ink paintings are collected. By comparing the results of the features on these paintings, our study investigates the difference and similarity between the two types of paintings on composition. Their composition designs are similar in visual balance and their tendency of composing along two diagonal lines, but are fairly different on many other aspects. For example, oil paintings are inclined to place objects on the bottom horizontal dividing lines of rule of thirds and golden mean. Having discovered the most important features that can differentiate the two types of paintings, we analyze the differences in the features and discuss their possible relationships to the culture and artists’ backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助小栗子采纳,获得10
刚刚
111发布了新的文献求助10
刚刚
彤彤发布了新的文献求助10
1秒前
whisky关注了科研通微信公众号
1秒前
1秒前
CodeCraft应助Han采纳,获得10
1秒前
2秒前
万能图书馆应助轻舟采纳,获得30
3秒前
科研通AI6应助好困采纳,获得10
3秒前
qq完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
dxszing完成签到 ,获得积分10
5秒前
所所应助Billy采纳,获得10
5秒前
烟花应助一叶知秋采纳,获得10
5秒前
逍遥发布了新的文献求助10
6秒前
天真的宝马完成签到,获得积分10
6秒前
如意秋珊应助呆萌绿茶采纳,获得10
8秒前
9秒前
Fancy完成签到 ,获得积分20
10秒前
11秒前
科研通AI6应助逍遥采纳,获得10
11秒前
12秒前
小二郎应助yuzhongLuo采纳,获得10
12秒前
善学以致用应助执着艳采纳,获得10
12秒前
小蘑菇应助苏柏亚采纳,获得10
13秒前
15秒前
北北北发布了新的文献求助10
15秒前
16秒前
16秒前
后夜发布了新的文献求助10
16秒前
哆哆发布了新的文献求助10
16秒前
17秒前
乐乐应助听懂的同学标个6采纳,获得10
17秒前
18秒前
18秒前
18秒前
科研通AI6应助海拾月采纳,获得30
19秒前
20秒前
风清扬发布了新的文献求助10
20秒前
Akim应助111采纳,获得10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593