已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DTI-HETA: prediction of drug–target interactions based on GCN and GAT on heterogeneous graph

计算机科学 图形 节点(物理) 图嵌入 嵌入 异构网络 注意力网络 数据挖掘 人工智能 机器学习 理论计算机科学 结构工程 电信 无线网络 工程类 无线
作者
Kanghao Shao,Yunhao Zhang,Yuqi Wen,Zhongnan Zhang,Song He,Xiaochen Bo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:30
标识
DOI:10.1093/bib/bbac109
摘要

Drug-target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug-drug and target-target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
cctv18应助寒冷的白梦采纳,获得10
3秒前
灵巧坤完成签到,获得积分20
4秒前
从容甜瓜完成签到 ,获得积分10
5秒前
yuaner发布了新的文献求助10
5秒前
5秒前
云栖完成签到,获得积分10
6秒前
7秒前
7秒前
张晓倩发布了新的文献求助10
7秒前
sutharsons应助wsb76采纳,获得100
8秒前
hengistdeng发布了新的文献求助10
8秒前
Halois发布了新的文献求助10
12秒前
潇洒觅山发布了新的文献求助10
14秒前
www268完成签到 ,获得积分10
15秒前
棍棍来也发布了新的文献求助10
16秒前
可爱的函函应助你好啊采纳,获得10
16秒前
16秒前
一方通行完成签到 ,获得积分10
17秒前
lpp_完成签到 ,获得积分10
17秒前
xsx完成签到,获得积分10
18秒前
劲秉应助阿源采纳,获得10
18秒前
彭于晏应助ypyue采纳,获得10
19秒前
情怀应助wjs0406采纳,获得10
19秒前
heiniu发布了新的文献求助30
22秒前
25秒前
28秒前
晨晨发布了新的文献求助10
31秒前
wjs0406发布了新的文献求助10
33秒前
34秒前
小白应助sharppanda采纳,获得10
35秒前
heiniu完成签到,获得积分10
41秒前
我是老大应助vagabond采纳,获得10
43秒前
lz完成签到,获得积分10
46秒前
在学海中挣扎完成签到 ,获得积分10
47秒前
咩咩羊完成签到 ,获得积分10
47秒前
耶啵完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766976
求助须知:如何正确求助?哪些是违规求助? 3311340
关于积分的说明 10158216
捐赠科研通 3026467
什么是DOI,文献DOI怎么找? 1661191
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755863