FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training

计算机科学 培训(气象学) 人工智能 机器学习 训练集 物理 气象学
作者
Yan Kang,Yang Liu,Xinle Liang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:13 (4): 1-16 被引量:30
标识
DOI:10.1145/3510031
摘要

Federated learning allows multiple parties to build machine learning models collaboratively without exposing data. In particular, vertical federated learning (VFL) enables participating parties to build a joint machine learning model based on distributed features of aligned samples. However, VFL requires all parties to share a sufficient amount of aligned samples. In reality, the set of aligned samples may be small, leaving the majority of the non-aligned data unused. In this article, we propose Federated Cross-view Training (FedCVT), a semi-supervised learning approach that improves the performance of the VFL model with limited aligned samples. More specifically, FedCVT estimates representations for missing features, predicts pseudo-labels for unlabeled samples to expand the training set, and trains three classifiers jointly based on different views of the expanded training set to improve the VFL model's performance. FedCVT does not require parties to share their original data and model parameters, thus preserving data privacy. We conduct experiments on NUS-WIDE, Vehicle, and CIFAR10 datasets. The experimental results demonstrate that FedCVT significantly outperforms vanilla VFL that only utilizes aligned samples. Finally, we perform ablation studies to investigate the contribution of each component of FedCVT to the performance of FedCVT. Code is available at https://github.com/yankang18/FedCVT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
seventonight2发布了新的文献求助10
2秒前
2秒前
陈陈陈发布了新的文献求助30
2秒前
guanxin完成签到 ,获得积分10
2秒前
科研通AI2S应助蒋念寒采纳,获得10
3秒前
幻月发布了新的文献求助10
3秒前
JUDY发布了新的文献求助10
3秒前
久念发布了新的文献求助10
3秒前
xialuoke完成签到,获得积分10
4秒前
巅峰囚冰发布了新的文献求助10
4秒前
YHJX发布了新的文献求助10
5秒前
5秒前
星xing完成签到,获得积分10
5秒前
6秒前
7秒前
欢也零星完成签到,获得积分10
7秒前
tianzml0应助Herzliya采纳,获得10
7秒前
9秒前
10秒前
11秒前
11秒前
12秒前
孤独翠柏发布了新的文献求助10
12秒前
牛安荷完成签到,获得积分10
13秒前
所所应助久念采纳,获得10
13秒前
Xbro发布了新的文献求助10
14秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
暮霭沉沉应助科研通管家采纳,获得10
15秒前
small应助科研通管家采纳,获得30
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
小会应助科研通管家采纳,获得30
15秒前
吉祥应助科研通管家采纳,获得30
15秒前
宁少爷应助科研通管家采纳,获得100
15秒前
Orange应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
暮霭沉沉应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175