FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training

计算机科学 培训(气象学) 人工智能 机器学习 训练集 物理 气象学
作者
Yan Kang,Yang Liu,Xinle Liang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:13 (4): 1-16 被引量:30
标识
DOI:10.1145/3510031
摘要

Federated learning allows multiple parties to build machine learning models collaboratively without exposing data. In particular, vertical federated learning (VFL) enables participating parties to build a joint machine learning model based on distributed features of aligned samples. However, VFL requires all parties to share a sufficient amount of aligned samples. In reality, the set of aligned samples may be small, leaving the majority of the non-aligned data unused. In this article, we propose Federated Cross-view Training (FedCVT), a semi-supervised learning approach that improves the performance of the VFL model with limited aligned samples. More specifically, FedCVT estimates representations for missing features, predicts pseudo-labels for unlabeled samples to expand the training set, and trains three classifiers jointly based on different views of the expanded training set to improve the VFL model's performance. FedCVT does not require parties to share their original data and model parameters, thus preserving data privacy. We conduct experiments on NUS-WIDE, Vehicle, and CIFAR10 datasets. The experimental results demonstrate that FedCVT significantly outperforms vanilla VFL that only utilizes aligned samples. Finally, we perform ablation studies to investigate the contribution of each component of FedCVT to the performance of FedCVT. Code is available at https://github.com/yankang18/FedCVT

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jolin完成签到,获得积分10
刚刚
Penguin发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
嘟嘟许发布了新的文献求助10
1秒前
1秒前
Nuyoah完成签到 ,获得积分10
1秒前
kuankuan完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
元谷雪发布了新的文献求助10
3秒前
zhh完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助细心尔蓝采纳,获得10
4秒前
铃兰发布了新的文献求助10
4秒前
12345完成签到,获得积分10
4秒前
5秒前
英姑应助Li采纳,获得10
5秒前
avc完成签到,获得积分10
5秒前
Llt完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
why发布了新的文献求助10
5秒前
KMMK完成签到,获得积分20
6秒前
like_Y完成签到,获得积分10
6秒前
汉堡包应助Ppp采纳,获得10
7秒前
7秒前
wjx发布了新的文献求助30
7秒前
劳伦斯完成签到 ,获得积分10
7秒前
微笑凡柔完成签到,获得积分20
7秒前
Yinan_Yao发布了新的文献求助30
7秒前
8秒前
8秒前
san发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552349
求助须知:如何正确求助?哪些是违规求助? 4637102
关于积分的说明 14647523
捐赠科研通 4578990
什么是DOI,文献DOI怎么找? 2511195
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457555