FedCVT: Semi-supervised Vertical Federated Learning with Cross-view Training

计算机科学 培训(气象学) 人工智能 机器学习 训练集 物理 气象学
作者
Yan Kang,Yang Liu,Xinle Liang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:13 (4): 1-16 被引量:30
标识
DOI:10.1145/3510031
摘要

Federated learning allows multiple parties to build machine learning models collaboratively without exposing data. In particular, vertical federated learning (VFL) enables participating parties to build a joint machine learning model based on distributed features of aligned samples. However, VFL requires all parties to share a sufficient amount of aligned samples. In reality, the set of aligned samples may be small, leaving the majority of the non-aligned data unused. In this article, we propose Federated Cross-view Training (FedCVT), a semi-supervised learning approach that improves the performance of the VFL model with limited aligned samples. More specifically, FedCVT estimates representations for missing features, predicts pseudo-labels for unlabeled samples to expand the training set, and trains three classifiers jointly based on different views of the expanded training set to improve the VFL model's performance. FedCVT does not require parties to share their original data and model parameters, thus preserving data privacy. We conduct experiments on NUS-WIDE, Vehicle, and CIFAR10 datasets. The experimental results demonstrate that FedCVT significantly outperforms vanilla VFL that only utilizes aligned samples. Finally, we perform ablation studies to investigate the contribution of each component of FedCVT to the performance of FedCVT. Code is available at https://github.com/yankang18/FedCVT

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
4秒前
yyw完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助嘿嘿嘿采纳,获得10
7秒前
gzy完成签到,获得积分10
7秒前
8秒前
8秒前
wjf发布了新的文献求助10
11秒前
情怀应助wang采纳,获得10
11秒前
wanci应助紫萱采纳,获得10
12秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
果汁橡皮糖完成签到,获得积分10
15秒前
wjf完成签到,获得积分20
17秒前
18秒前
18秒前
汪宇发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
落忆完成签到 ,获得积分10
20秒前
wang完成签到,获得积分10
21秒前
ding应助Queena采纳,获得10
22秒前
柴胡发布了新的文献求助10
22秒前
嘿嘿嘿发布了新的文献求助10
23秒前
24秒前
CAOHOU应助忧伤的书萱采纳,获得10
24秒前
目眩完成签到,获得积分10
24秒前
26秒前
大橙子发布了新的文献求助10
27秒前
善学以致用应助wjf采纳,获得10
28秒前
28秒前
sougardenist完成签到 ,获得积分10
29秒前
隐形的映波完成签到,获得积分10
30秒前
疯狂的寒风完成签到,获得积分10
30秒前
林搞搞发布了新的文献求助10
31秒前
嘿嘿嘿完成签到,获得积分10
31秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812