作者
Antonie Lechner,Fiona Henkel,Franziska Hartung,Sina Bohnacker,Francesca Alessandrini,Ekaterina O. Gubernatorova,Marina S. Drutskaya,Carlo Angioni,Yannick Schreiber,Pascal Haimerl,Yan Ge,Dominique Thomas,Agnieszka M. Kabat,Edward J. Pearce,Caspar Ohnmacht,Sergei A. Nedospasov,Peter J. Murray,Adam Chaker,Carsten B. Schmidt‐Weber,Julia Esser‐von Bieren
摘要
BackgroundInfectious agents can reprogram or “train” macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known.ObjectiveWe sought to decipher macrophage-trained immunity in allergic asthma.MethodsWe used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography–tandem mass spectrometry analysis, respectively.ResultsWe found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2–TNF–2-HG–PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow–derived macrophages from HDM-allergic mice.ConclusionAllergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy. Infectious agents can reprogram or “train” macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. We sought to decipher macrophage-trained immunity in allergic asthma. We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography–tandem mass spectrometry analysis, respectively. We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2–TNF–2-HG–PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow–derived macrophages from HDM-allergic mice. Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.