Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 环境科学 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Chen Qu,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:9
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依发布了新的文献求助10
刚刚
NexusExplorer应助孙小猪采纳,获得10
刚刚
黄橙子发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
共享精神应助踏实滑板采纳,获得10
3秒前
Doc完成签到,获得积分10
3秒前
4秒前
4秒前
富贵完成签到,获得积分10
4秒前
4秒前
hexiaoxiao完成签到,获得积分10
4秒前
铃儿响叮党完成签到,获得积分10
5秒前
默默新儿发布了新的文献求助10
5秒前
金桂琴完成签到,获得积分10
5秒前
Maosha完成签到,获得积分10
5秒前
科研r发布了新的文献求助10
6秒前
6秒前
关山发布了新的文献求助10
6秒前
火星上牛青完成签到,获得积分10
6秒前
Cheryl发布了新的文献求助10
7秒前
富贵发布了新的文献求助10
7秒前
7秒前
Grinder发布了新的文献求助10
8秒前
重要寒凡完成签到,获得积分10
8秒前
9秒前
orixero应助研友_nV2pkn采纳,获得10
9秒前
ggg发布了新的文献求助10
9秒前
Kolfee完成签到,获得积分10
9秒前
汪汪队立大功完成签到,获得积分10
10秒前
11秒前
甜甜玫瑰应助queer采纳,获得30
11秒前
12秒前
贝果儿发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912