Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Qu Chen,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:21
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doctorbba发布了新的文献求助10
1秒前
田様应助傻傻的修洁采纳,获得10
1秒前
下文献的蜉蝣完成签到 ,获得积分10
2秒前
a1313发布了新的文献求助10
2秒前
yy发布了新的文献求助10
3秒前
3秒前
科研通AI6应助草莓采纳,获得10
4秒前
一站到底完成签到 ,获得积分10
4秒前
4秒前
4秒前
6秒前
莲花庙里吃苹果完成签到,获得积分20
9秒前
zhoushishan发布了新的文献求助10
10秒前
10秒前
10秒前
jyylrl完成签到,获得积分10
11秒前
11秒前
风清扬发布了新的文献求助30
13秒前
JamesPei应助忧伤的向日葵采纳,获得30
13秒前
善学以致用应助yy采纳,获得10
14秒前
14秒前
14秒前
如风发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
SuperYing发布了新的文献求助10
20秒前
20秒前
21秒前
Hello应助刘清河采纳,获得10
22秒前
冰冰完成签到 ,获得积分10
22秒前
可爱多发布了新的文献求助10
23秒前
嘟嘟完成签到 ,获得积分10
24秒前
zsy发布了新的文献求助10
26秒前
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610252
求助须知:如何正确求助?哪些是违规求助? 4694737
关于积分的说明 14884005
捐赠科研通 4721516
什么是DOI,文献DOI怎么找? 2545036
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039