Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Qu Chen,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:21
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
当年明月发布了新的文献求助10
2秒前
4秒前
4秒前
F1t272发布了新的文献求助10
4秒前
鹿c3完成签到,获得积分10
5秒前
无奈的晴完成签到,获得积分10
5秒前
YY完成签到,获得积分10
6秒前
BowieHuang应助ddw采纳,获得10
7秒前
柒零七发布了新的文献求助10
7秒前
fx发布了新的文献求助10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
9秒前
满意曼荷应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
满意曼荷应助科研通管家采纳,获得10
9秒前
9秒前
Mic应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Mic应助科研通管家采纳,获得10
9秒前
道儿应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049