Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Qu Chen,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:21
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸鱼不翻身应助小米粥采纳,获得10
刚刚
1秒前
浮游应助KBRS采纳,获得10
1秒前
我是老大应助繁荣的夏烟采纳,获得10
2秒前
3秒前
平安只喜乐完成签到,获得积分10
3秒前
苹果不平完成签到,获得积分10
3秒前
3秒前
Pinkie完成签到,获得积分10
4秒前
坦率依柔发布了新的文献求助30
4秒前
小何发布了新的文献求助10
5秒前
stay发布了新的文献求助10
5秒前
嗯嗯完成签到,获得积分10
5秒前
6秒前
6秒前
小胡胡完成签到,获得积分10
6秒前
6秒前
人生苦短完成签到,获得积分10
6秒前
7秒前
晨之曦光完成签到,获得积分20
8秒前
无花果应助粉蒸肉采纳,获得10
9秒前
人生苦短发布了新的文献求助10
10秒前
10秒前
Bailey完成签到,获得积分10
10秒前
在水一方应助ysl采纳,获得10
10秒前
10秒前
希望天下0贩的0应助Dora采纳,获得10
11秒前
乐观的颦发布了新的文献求助10
11秒前
文6发布了新的文献求助10
11秒前
11秒前
七秒鱼完成签到,获得积分10
11秒前
追寻访卉发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
一一完成签到,获得积分10
12秒前
诸事顺利发布了新的文献求助30
13秒前
Yixuan_Zou发布了新的文献求助10
13秒前
13秒前
darling完成签到,获得积分10
13秒前
彩色又夏完成签到,获得积分20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470