已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 环境科学 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Chen Qu,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:9
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yyd完成签到 ,获得积分10
2秒前
CAP发布了新的文献求助10
3秒前
虚幻小凝发布了新的文献求助20
3秒前
5秒前
WANG.发布了新的文献求助10
5秒前
雷霆嘎巴猴关注了科研通微信公众号
5秒前
pyp完成签到,获得积分20
6秒前
小鹿爱科研完成签到 ,获得积分10
7秒前
随便走的闲人完成签到 ,获得积分10
7秒前
8秒前
科研通AI6应助语文采纳,获得10
8秒前
Lucas应助Murphy采纳,获得10
9秒前
小鹿爱科研关注了科研通微信公众号
10秒前
10秒前
pyp发布了新的文献求助10
11秒前
Hello应助zfcc采纳,获得10
12秒前
12秒前
wdppkzl发布了新的文献求助10
12秒前
13秒前
百浪多息发布了新的文献求助150
13秒前
13秒前
13秒前
挑挑发布了新的文献求助10
13秒前
13秒前
wumin发布了新的文献求助10
14秒前
15秒前
17秒前
花深粥完成签到 ,获得积分10
18秒前
Super Zzzz发布了新的文献求助10
18秒前
shining1发布了新的文献求助10
18秒前
20秒前
aa完成签到,获得积分10
20秒前
酷波er应助yangsen采纳,获得10
21秒前
傻丢完成签到 ,获得积分10
21秒前
今后应助科研通管家采纳,获得10
21秒前
小明应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868471
求助须知:如何正确求助?哪些是违规求助? 4159926
关于积分的说明 12900040
捐赠科研通 3914325
什么是DOI,文献DOI怎么找? 2149797
邀请新用户注册赠送积分活动 1168260
关于科研通互助平台的介绍 1070659