Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 环境科学 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Chen Qu,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:9
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NancyDee完成签到,获得积分10
1秒前
开放雪碧完成签到,获得积分10
1秒前
吴媛媛完成签到 ,获得积分10
1秒前
Ava应助哇哇的采纳,获得10
1秒前
失眠百川应助嘤嘤怪采纳,获得20
2秒前
荔枝发布了新的文献求助10
2秒前
橘子味棒冰完成签到,获得积分10
2秒前
落叶的季节完成签到,获得积分10
3秒前
勤劳友桃发布了新的文献求助10
3秒前
幽灵发布了新的文献求助10
3秒前
xnzll发布了新的文献求助10
3秒前
给我好好读书完成签到,获得积分10
3秒前
雄图完成签到,获得积分10
4秒前
酷波er应助冷酷的玉米采纳,获得10
4秒前
852应助llzuo采纳,获得10
5秒前
H-China完成签到,获得积分20
5秒前
橙汁得配曼妥思完成签到 ,获得积分10
5秒前
HanQing完成签到,获得积分10
5秒前
绝对快乐完成签到,获得积分10
6秒前
顺心的飞飞完成签到,获得积分10
6秒前
李爱国应助冬瓜熊采纳,获得10
6秒前
Lin发布了新的文献求助30
6秒前
北栀完成签到,获得积分10
8秒前
9秒前
小红完成签到,获得积分10
9秒前
绝对快乐发布了新的文献求助10
9秒前
xnzll完成签到,获得积分10
9秒前
9秒前
10秒前
活泼的大船完成签到,获得积分10
11秒前
哒哒完成签到 ,获得积分10
11秒前
儒雅夜天完成签到 ,获得积分10
11秒前
zz不爱读书完成签到,获得积分10
11秒前
CHOSEN.1发布了新的文献求助10
12秒前
小红发布了新的文献求助30
12秒前
kasey关注了科研通微信公众号
13秒前
13秒前
NIUB发布了新的文献求助10
13秒前
学术laji发布了新的文献求助10
14秒前
神揽星辰入梦完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904