已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-Driven Design of Nanopore Graphene for Water Desalination

海水淡化 纳米孔 渗透 石墨烯 反渗透 工艺工程 材料科学 纳米技术 化学工程 化学 工程类 生物化学
作者
Lijun Liang,Hanxing Zhou,Jiachen Li,Qu Chen,Linli Zhu,Hao Ren
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (50): 27685-27692 被引量:21
标识
DOI:10.1021/acs.jpcc.1c09470
摘要

Development of energy-efficient and low-cost desalination techniques is of pivotal importance, and reverse osmosis (RO) is regarded as one of the most promising solutions to tackle the world water crisis and has been widely deployed for large-scale and distributed water desalination. Graphene with nanopores was considered as a promising desalination membrane due to its unique properties. However, the intrinsic complexity of the desalination process, together with the various tunable properties of the membranes/nanopores themselves, makes accurate prediction of the performance or designing of new materials challenging. Machine learning (ML) techniques are superior in analyzing physical processes from multiple aspects, which could facilitate the rational design of high-performance desalination membranes. In this work, it was discovered that salt rejection mainly depends on the pore shape, pore area, and applied pressure and that water permeation mainly depends on the pore area and applied pressure from the ML study. The physical–chemical analysis based on the ion density and water density along the nanopore offers us a deep understanding of the effect of the pore shape on salt rejection and water permeation. In light of the results of ML and the analysis of physicochemical properties, we design the graphene pore with a particular pore shape, which could achieve high water permeation with high salt rejection. ML combined with high-throughput computation methods could help us design the material with excellent performance for desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑摄会阿Fay完成签到,获得积分10
1秒前
1秒前
3秒前
随机科研完成签到,获得积分10
3秒前
烟花应助小盖采纳,获得10
3秒前
MJH123456发布了新的文献求助10
5秒前
大神瓜发布了新的文献求助10
6秒前
7秒前
7秒前
张张发布了新的文献求助10
7秒前
是菜团子呀完成签到 ,获得积分10
8秒前
css1997完成签到 ,获得积分10
9秒前
11秒前
曾经易烟完成签到,获得积分20
11秒前
13秒前
13秒前
科目三应助张张采纳,获得10
14秒前
wam关闭了wam文献求助
14秒前
小盖发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI6应助喵晓懒采纳,获得10
17秒前
科研小巴发布了新的文献求助10
18秒前
BruceZh完成签到,获得积分10
20秒前
小蘑菇完成签到,获得积分10
20秒前
小盖完成签到,获得积分10
21秒前
务实的千风完成签到,获得积分10
23秒前
hxt发布了新的文献求助50
23秒前
sj发布了新的文献求助10
23秒前
pual完成签到,获得积分10
25秒前
易夜雨居完成签到 ,获得积分10
25秒前
昌莆完成签到 ,获得积分10
27秒前
健忘浩宇完成签到,获得积分10
28秒前
科研通AI6应助sensen采纳,获得10
30秒前
Criminology34应助务实的千风采纳,获得10
32秒前
33秒前
33秒前
msn00完成签到 ,获得积分10
36秒前
叶子完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875