Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging

卷积神经网络 深度学习 医学 试验装置 人工智能 内翻性乳头状瘤 磁共振成像 模式识别(心理学) 数据集 接收机工作特性 放射科 计算机科学 病理 乳头状瘤 内科学
作者
George S. Liu,Angela Yang,Dayoung Kim,Andrew Hojel,Diana Voevodsky,Julia Wang,Charles C. L. Tong,Heather Ungerer,James N. Palmer,Michael A. Kohanski,Jayakar V. Nayak,Peter H. Hwang,Nithin D. Adappa,Zara M. Patel
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
卷期号:12 (8): 1025-1033 被引量:31
标识
DOI:10.1002/alr.22958
摘要

Distinguishing benign inverted papilloma (IP) tumors from those that have undergone malignant transformation to squamous cell carcinoma (IP-SCC) is important but challenging to do preoperatively. Magnetic resonance imaging (MRI) can help differentiate these 2 entities, but no established method exists that can automatically synthesize all potentially relevant MRI image features to distinguish IP and IP-SCC. We explored a deep learning approach, using 3-dimensional convolutional neural networks (CNNs), to address this challenge.Retrospective chart reviews were performed at 2 institutions to create a data set of preoperative MRIs with corresponding surgical pathology reports. The MRI data set included all available MRI sequences in the axial plane, which were used to train, validate, and test 3 CNN models. Saliency maps were generated to visualize areas of MRIs with greatest influence on predictions.A total of 90 patients with IP (n = 64) or IP-SCC (n = 26) tumors were identified, with a total of 446 images of distinct MRI sequences for IP (n = 329) or IP-SCC (n = 117). The best CNN model, All-Net, demonstrated a sensitivity of 66.7%, specificity of 81.5%, overall accuracy of 77.9%, and receiver-operating characteristic area under the curve of 0.80 (95% confidence interval, 0.682-0.898) for test classification performance. The other 2 models, Small-All-Net and Elastic-All-Net, showed similar performance levels.A deep learning approach with 3-dimensional CNNs can distinguish IP and IP-SCC with moderate test classification performance. Although CNNs demonstrate promise to enhance the prediction of IP-SCC using MRIs, more data are needed before they can reach the predictive value already established by human MRI evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
yb完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
在水一方应助HJJHJH采纳,获得10
3秒前
阿谈完成签到,获得积分10
5秒前
星辰大海应助牛牛牛采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
吼吼应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
花花世界迷人眼完成签到,获得积分10
5秒前
罗非鱼应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得100
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
吼吼应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
吼吼应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679737
求助须知:如何正确求助?哪些是违规求助? 4993550
关于积分的说明 15170652
捐赠科研通 4839614
什么是DOI,文献DOI怎么找? 2593472
邀请新用户注册赠送积分活动 1546560
关于科研通互助平台的介绍 1504674