已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging

卷积神经网络 深度学习 医学 试验装置 人工智能 内翻性乳头状瘤 磁共振成像 模式识别(心理学) 数据集 接收机工作特性 放射科 计算机科学 病理 乳头状瘤 内科学
作者
George S. Liu,Angela Yang,Dayoung Kim,Andrew Hojel,Diana Voevodsky,Julia Wang,Charles C. L. Tong,Heather Ungerer,James N. Palmer,Michael A. Kohanski,Jayakar V. Nayak,Peter H. Hwang,Nithin D. Adappa,Zara M. Patel
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
卷期号:12 (8): 1025-1033 被引量:23
标识
DOI:10.1002/alr.22958
摘要

Abstract Background Distinguishing benign inverted papilloma (IP) tumors from those that have undergone malignant transformation to squamous cell carcinoma (IP‐SCC) is important but challenging to do preoperatively. Magnetic resonance imaging (MRI) can help differentiate these 2 entities, but no established method exists that can automatically synthesize all potentially relevant MRI image features to distinguish IP and IP‐SCC. We explored a deep learning approach, using 3‐dimensional convolutional neural networks (CNNs), to address this challenge. Methods Retrospective chart reviews were performed at 2 institutions to create a data set of preoperative MRIs with corresponding surgical pathology reports. The MRI data set included all available MRI sequences in the axial plane, which were used to train, validate, and test 3 CNN models. Saliency maps were generated to visualize areas of MRIs with greatest influence on predictions. Results A total of 90 patients with IP (n = 64) or IP‐SCC (n = 26) tumors were identified, with a total of 446 images of distinct MRI sequences for IP (n = 329) or IP‐SCC (n = 117). The best CNN model, All‐Net, demonstrated a sensitivity of 66.7%, specificity of 81.5%, overall accuracy of 77.9%, and receiver‐operating characteristic area under the curve of 0.80 (95% confidence interval, 0.682‐0.898) for test classification performance. The other 2 models, Small‐All‐Net and Elastic‐All‐Net, showed similar performance levels. Conclusion A deep learning approach with 3‐dimensional CNNs can distinguish IP and IP‐SCC with moderate test classification performance. Although CNNs demonstrate promise to enhance the prediction of IP‐SCC using MRIs, more data are needed before they can reach the predictive value already established by human MRI evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜鸟完成签到,获得积分10
1秒前
斯文明杰发布了新的文献求助10
2秒前
落叶无悔发布了新的文献求助10
3秒前
斯文败类应助xingyi采纳,获得10
3秒前
4秒前
江亭送行客完成签到,获得积分10
5秒前
宗师算个瓢啊完成签到 ,获得积分10
8秒前
10秒前
SimonJay关注了科研通微信公众号
10秒前
llllll完成签到 ,获得积分10
11秒前
CipherSage应助斯文明杰采纳,获得10
11秒前
xingyi发布了新的文献求助10
15秒前
16秒前
19秒前
20秒前
科研通AI2S应助煜晟采纳,获得10
21秒前
swallow完成签到,获得积分10
23秒前
SimonJay发布了新的文献求助10
25秒前
1257应助小粒橙采纳,获得10
29秒前
29秒前
会思考的狐狸完成签到 ,获得积分10
30秒前
许宗菊完成签到,获得积分10
31秒前
31秒前
31秒前
酷酷的水儿完成签到,获得积分10
32秒前
34秒前
jasper完成签到,获得积分10
35秒前
张凤发布了新的文献求助10
35秒前
35秒前
qmx完成签到,获得积分10
36秒前
打打应助雨后彩虹伤采纳,获得10
37秒前
40秒前
41秒前
单薄的画笔完成签到,获得积分10
44秒前
44秒前
cxinnn完成签到,获得积分20
44秒前
叶白山发布了新的文献求助10
47秒前
小丑鱼儿完成签到 ,获得积分10
47秒前
48秒前
48秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052156
求助须知:如何正确求助?哪些是违规求助? 2709405
关于积分的说明 7416998
捐赠科研通 2353893
什么是DOI,文献DOI怎么找? 1245637
科研通“疑难数据库(出版商)”最低求助积分说明 605845
版权声明 595870