Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging

卷积神经网络 深度学习 医学 试验装置 人工智能 内翻性乳头状瘤 磁共振成像 模式识别(心理学) 数据集 接收机工作特性 放射科 计算机科学 病理 乳头状瘤 内科学
作者
George S. Liu,Angela Yang,Dayoung Kim,Andrew Hojel,Diana Voevodsky,Julia Wang,Charles C. L. Tong,Heather Ungerer,James N. Palmer,Michael A. Kohanski,Jayakar V. Nayak,Peter H. Hwang,Nithin D. Adappa,Zara M. Patel
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
卷期号:12 (8): 1025-1033 被引量:31
标识
DOI:10.1002/alr.22958
摘要

Distinguishing benign inverted papilloma (IP) tumors from those that have undergone malignant transformation to squamous cell carcinoma (IP-SCC) is important but challenging to do preoperatively. Magnetic resonance imaging (MRI) can help differentiate these 2 entities, but no established method exists that can automatically synthesize all potentially relevant MRI image features to distinguish IP and IP-SCC. We explored a deep learning approach, using 3-dimensional convolutional neural networks (CNNs), to address this challenge.Retrospective chart reviews were performed at 2 institutions to create a data set of preoperative MRIs with corresponding surgical pathology reports. The MRI data set included all available MRI sequences in the axial plane, which were used to train, validate, and test 3 CNN models. Saliency maps were generated to visualize areas of MRIs with greatest influence on predictions.A total of 90 patients with IP (n = 64) or IP-SCC (n = 26) tumors were identified, with a total of 446 images of distinct MRI sequences for IP (n = 329) or IP-SCC (n = 117). The best CNN model, All-Net, demonstrated a sensitivity of 66.7%, specificity of 81.5%, overall accuracy of 77.9%, and receiver-operating characteristic area under the curve of 0.80 (95% confidence interval, 0.682-0.898) for test classification performance. The other 2 models, Small-All-Net and Elastic-All-Net, showed similar performance levels.A deep learning approach with 3-dimensional CNNs can distinguish IP and IP-SCC with moderate test classification performance. Although CNNs demonstrate promise to enhance the prediction of IP-SCC using MRIs, more data are needed before they can reach the predictive value already established by human MRI evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vicker发布了新的文献求助10
1秒前
NoMigraine发布了新的文献求助10
1秒前
zyw完成签到,获得积分20
1秒前
Moonber发布了新的文献求助10
1秒前
Jasper应助激昂的柚子采纳,获得20
2秒前
2秒前
jiang发布了新的文献求助10
3秒前
Hello应助落霞与孤鹜齐飞采纳,获得10
4秒前
5秒前
田様应助舒心的日记本采纳,获得10
5秒前
8秒前
林先生完成签到,获得积分10
8秒前
顾矜应助自由蓉采纳,获得10
9秒前
小二郎应助康米采纳,获得10
9秒前
9秒前
小蘑菇应助萱瑄爸爸采纳,获得10
9秒前
10秒前
11完成签到,获得积分10
10秒前
Swindler完成签到,获得积分10
10秒前
学术小白发布了新的文献求助30
11秒前
张怡凯完成签到 ,获得积分10
11秒前
王一正完成签到,获得积分10
11秒前
12秒前
浮游应助mark707采纳,获得30
12秒前
12秒前
13秒前
思源应助温童采纳,获得10
14秒前
wwww发布了新的文献求助10
14秒前
西红柿完成签到,获得积分10
14秒前
科研通AI5应助hyx9504采纳,获得10
14秒前
田様应助NoMigraine采纳,获得10
14秒前
YuequnMa发布了新的文献求助10
14秒前
14秒前
Y.X.发布了新的文献求助10
15秒前
宋成为发布了新的文献求助10
17秒前
17秒前
领导范儿应助曾经的问兰采纳,获得10
17秒前
17秒前
33关注了科研通微信公众号
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016122
求助须知:如何正确求助?哪些是违规求助? 4256293
关于积分的说明 13264157
捐赠科研通 4060200
什么是DOI,文献DOI怎么找? 2220658
邀请新用户注册赠送积分活动 1229998
关于科研通互助平台的介绍 1152626