Principal Component Analysis (PCA) Loading and Statistical Tests for Nuclear Magnetic Resonance (NMR) Metabolomics Involving Multiple Study Groups

代谢组学 主成分分析 过度拟合 化学计量学 化学 线性判别分析 偏最小二乘回归 代谢物 质子核磁共振 人工智能 模式识别(心理学) 计算生物学 机器学习 计算机科学 色谱法 人工神经网络 生物化学 生物 立体化学
作者
Lin Jiang,Hunter Sullivan,Bo Wang
出处
期刊:Analytical Letters [Taylor & Francis]
卷期号:55 (10): 1648-1662 被引量:9
标识
DOI:10.1080/00032719.2021.2019758
摘要

Metabolomics is an interdisciplinary area that integrates knowledge of instrumentation, data science, and biochemistry. Metabolomics studies the changes in a large number of metabolites after various treatments using analytical platforms. However, the interpretation approaches have not been completely investigated. Principal component analysis (PCA) is an unsupervised method that describes high throughput metabolite data, which is different from supervised approaches such as partial least-squares discriminant analysis (PLS-DA) which frequently has overfitting problems. The interpretation of PCA loadings, especially for studies with multiple study groups, is not well developed for metabolomics. In this study, a new method was reported that integrates PCA loading values with the commonly used statistical t-test analysis to significantly improve the convenience and efficiency of interpretation. The method was demonstrated using practical studies of NMR metabolomics on the extracts from sea anemone that were treated with six atrazine concentrations. The results indicated that the approach is suitable for multiple groups of metabolomics for early-stage discoveries, such as low concentrations and potentially longitudinal studies. In summary, this methodology may be critical in studies such as environmental metabolomics with various stimuli factors where the data interpretation was previously incompletely developed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaodaiaa完成签到,获得积分10
1秒前
andrele应助仁爱的伯云采纳,获得200
1秒前
稻草人发布了新的文献求助30
1秒前
Gun完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
小军军完成签到,获得积分20
7秒前
guanzhuang发布了新的文献求助10
7秒前
8秒前
689发布了新的文献求助10
8秒前
huntme完成签到,获得积分10
8秒前
lzc发布了新的文献求助30
11秒前
Jia完成签到,获得积分10
12秒前
逃之姚姚发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
希望天下0贩的0应助燕燕采纳,获得10
13秒前
猫猫侠发布了新的文献求助10
13秒前
燕子完成签到,获得积分10
13秒前
14秒前
14秒前
完美世界应助Liu采纳,获得10
15秒前
饱满沛儿发布了新的文献求助10
15秒前
纯真含灵完成签到,获得积分10
17秒前
无情向薇应助龚幻梦采纳,获得10
18秒前
田様应助微笑的小刺猬采纳,获得10
18秒前
盛清让发布了新的文献求助10
19秒前
jeff发布了新的文献求助10
20秒前
宁空完成签到,获得积分20
21秒前
22秒前
wa完成签到,获得积分10
24秒前
jeff完成签到,获得积分10
24秒前
123123123发布了新的文献求助10
25秒前
无花果应助lxy采纳,获得10
26秒前
28秒前
段国梁发布了新的文献求助10
28秒前
30秒前
徐小哼发布了新的文献求助10
32秒前
hjhhje发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963