尿素酶
化学
嗜盐菌
碳酸氢铵
降水
核化学
方解石
碳酸氢盐
铵
扫描电子显微镜
盐(化学)
矿物学
生物化学
材料科学
细菌
酶
生物
有机化学
原材料
物理
气象学
复合材料
遗传学
作者
Rashmi Dikshit,Arjun Dey,Aloke Kumar
标识
DOI:10.1080/01490451.2021.2019856
摘要
The present work explores the adaptive behavior of well-known ureolytic bacterial strain namely Sporosarcina pasteurii for microbial-induced calcite precipitation (MICP) under saline environment. MICP activity was observed up to 10% NaCl supplementation and confirmed by several characterization techniques viz. scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The urease activity did not show appreciable decline till 5% NaCl supplementation but beyond that drastic reduction was observed though MICP process continued. These results indicated a shift in the biological pathway for MICP process at higher salt concentrations. This was confirmed by estimation of ammonium ion concentration which was approximately 4 µg/ml with 10% NaCl supplementation as compared to 8.5 µg/ml at 0% NaCl supplementation. To provide an insight on the nature of protein expressed, combination of liquid chromatography-mass spectrometry (nano-LC-MS) approaches along with an exponentially modified protein abundance index (emPAI) methodology were explored. The findings suggest the presence of significant number of osmoregulatory proteins substantiating halophilic adaptation of S. pasteurii and bicarbonate transport mediated precipitation at higher levels of salinity. Further, co-precipitation of CaCl2 and MgSO4 was also confirmed with SEM and energy dispersive spectroscopy (EDS) mapping under higher saline environment thus substantiating the efficacy of the strain.
科研通智能强力驱动
Strongly Powered by AbleSci AI