组氨酸激酶
野油菜黄单胞菌
生物
群体感应
自磷酸化
生物化学
黄单胞菌
组氨酸
激酶
细胞生物学
微生物学
酶
基因
蛋白激酶A
毒力
作者
Xiangjun Tian,Yao Wu,Zhen Cai,Wenyuan Qian
标识
DOI:10.1101/2022.01.03.474871
摘要
Diffusible signal factors (DSFs) are medium-chain fatty acids that induce bacterial quorum sensing. Among these compounds, BDSF is a structural analog of DSF that is commonly detected in bacterial species (e.g., Xanthomonas, Pseudomonas, and Burkholderia). Additionally, BDSF contributes to the interkingdom communication regulating fungal life stage transitions. How BDSF is sensed in Xanthomonas spp. and the functional diversity between BDSF and DSF remain unclear. In this study, we generated genetic and biochemical evidence that BDSF is a low-active regulator of X. campestris pv. campestris quorum sensing, whereas trans-BDSF seems not a signaling compound. BDSF is detected by the sensor histidine kinase RpfC. Although BDSF has relatively low physiological activities, it binds to the RpfC sensor with a high affinity and activates RpfC autophosphorylation to a level that is similar to that induced by DSF in vitro. The inconsistency in the physiological and biochemical activities of BDSF is not due to RpfC–RpfG phosphorylation or RpfG hydrolase. Neither BDSF nor DSF controls the phosphotransferase and phosphatase activities of RpfC or the ability of RpfG hydrolase to degrade the bacterial second messenger cyclic di-GMP. We demonstrated that BDSF is prone to degradation by RpfB, a critical fatty acyl-CoA ligase involved in the turnover of DSF-family signals. rpfB mutations lead to substantial increases in BDSF-induced quorum sensing. Although DSF and BDSF are similarly detected by RpfC, our data suggest that their differential degradation in cells is the major factor responsible for the diversity in their physiological effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI