已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases

无线电技术 恶性肿瘤 医学 卷积神经网络 人工智能 结直肠癌 磁共振成像 计算机科学 转移 多学科方法 癌症 机器学习 医学物理学 放射科 病理 内科学 社会学 社会科学
作者
Gianluca Rompianesi,Francesca Pegoraro,Carlo Ceresa,Roberto Montalti,Roberto Troisi
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group Co]
卷期号:28 (1): 108-122 被引量:67
标识
DOI:10.3748/wjg.v28.i1.108
摘要

Colorectal cancer (CRC) is the third most common malignancy worldwide, with approximately 50% of patients developing colorectal cancer liver metastasis (CRLM) during the follow-up period. Management of CRLM is best achieved via a multidisciplinary approach and the diagnostic and therapeutic decision-making process is complex. In order to optimize patients' survival and quality of life, there are several unsolved challenges which must be overcome. These primarily include a timely diagnosis and the identification of reliable prognostic factors. Furthermore, to allow optimal treatment options, a precision-medicine, personalized approach is required. The widespread digitalization of healthcare generates a vast amount of data and together with accessible high-performance computing, artificial intelligence (AI) technologies can be applied. By increasing diagnostic accuracy, reducing timings and costs, the application of AI could help mitigate the current shortcomings in CRLM management. In this review we explore the available evidence of the possible role of AI in all phases of the CRLM natural history. Radiomics analysis and convolutional neural networks (CNN) which combine computed tomography (CT) images with clinical data have been developed to predict CRLM development in CRC patients. AI models have also proven themselves to perform similarly or better than expert radiologists in detecting CRLM on CT and magnetic resonance scans or identifying them from the noninvasive analysis of patients' exhaled air. The application of AI and machine learning (ML) in diagnosing CRLM has also been extended to histopathological examination in order to rapidly and accurately identify CRLM tissue and its different histopathological growth patterns. ML and CNN have shown good accuracy in predicting response to chemotherapy, early local tumor progression after ablation treatment, and patient survival after surgical treatment or chemotherapy. Despite the initial enthusiasm and the accumulating evidence, AI technologies' role in healthcare and CRLM management is not yet fully established. Its limitations mainly concern safety and the lack of regulation and ethical considerations. AI is unlikely to fully replace any human role but could be actively integrated to facilitate physicians in their everyday practice. Moving towards a personalized and evidence-based patient approach and management, further larger, prospective and rigorous studies evaluating AI technologies in patients at risk or affected by CRLM are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111chen完成签到 ,获得积分20
刚刚
180霸总完成签到 ,获得积分10
刚刚
ranbel发布了新的文献求助10
刚刚
petrichor发布了新的文献求助10
1秒前
ngg完成签到 ,获得积分10
2秒前
王淳完成签到 ,获得积分10
3秒前
四天垂完成签到 ,获得积分10
5秒前
绵绵完成签到 ,获得积分10
8秒前
zzd完成签到,获得积分20
10秒前
petrichor发布了新的文献求助10
16秒前
B哥完成签到,获得积分10
17秒前
栗子完成签到,获得积分10
17秒前
雾蓝完成签到,获得积分10
19秒前
Windfall完成签到,获得积分10
21秒前
出头天完成签到,获得积分10
23秒前
25秒前
领导范儿应助雾蓝采纳,获得10
27秒前
yuntong完成签到 ,获得积分10
30秒前
辜月十二完成签到 ,获得积分10
30秒前
天天快乐应助petrichor采纳,获得10
34秒前
彭于晏应助超帅锦程采纳,获得10
36秒前
deeferf完成签到 ,获得积分10
37秒前
光能使者完成签到,获得积分10
38秒前
Echo完成签到,获得积分20
39秒前
HEIKU完成签到,获得积分0
41秒前
peanut完成签到 ,获得积分10
41秒前
42秒前
丸子完成签到 ,获得积分10
42秒前
43秒前
46秒前
西瓜霜完成签到 ,获得积分10
47秒前
超帅锦程发布了新的文献求助10
48秒前
XJT007完成签到 ,获得积分10
49秒前
南宫炽滔完成签到 ,获得积分10
49秒前
yangzai完成签到 ,获得积分10
50秒前
Sunshine发布了新的文献求助10
51秒前
wjw123发布了新的文献求助10
51秒前
高高菠萝完成签到 ,获得积分10
52秒前
赵文悦完成签到,获得积分10
54秒前
siqilinwillbephd完成签到,获得积分10
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335171
求助须知:如何正确求助?哪些是违规求助? 2964373
关于积分的说明 8613564
捐赠科研通 2643210
什么是DOI,文献DOI怎么找? 1447252
科研通“疑难数据库(出版商)”最低求助积分说明 670587
邀请新用户注册赠送积分活动 658930