作者
Ardavan Farhadi,Shangshang Tang,Maoxian Huang,Qiuran Yu,Chang Xu,Erchao Li
摘要
Water salinity, pH, and nitrite concentration are considered environmental factors affecting the growth rate, survival, health, and physiological conditions of aquatic animals. The identification of key genes that are involved in the response to environmental stressors is essential for controlling stress in aquatic animals and sustainable aquaculture. In this study, RNA sequencing was performed to identify the differentially expressed genes (DEGs) and biological pathways that are involved in the response of the hepatopancreas to environmental stressors, including low salinity stress, nitrite stress, low pH stress, and high pH stress. The DEGs were enriched in biological pathways related to immune response, energy metabolism, oxidative stress response, hemostasis, and enzymatic activity of the hepatopancreas. In addition to the identification of DEGs related to each stressor, some DEGs were found to be expressed among all groups. The most important overlapping DEGs under multiple stressors were juvenile hormone esterase-like protein 2 (JHE-like), myosin light chain, C-type lectin 2, myosin-9-like, anti-lipopolysaccharide factor 1 (ALF-1), peroxisomal acyl-coenzyme An oxidase 1-like (ACX1), hepatic lectin-like, venom phosphodiesterase 2-like, hemolymph clottable protein-like (CP), cathepsin L, and Ras-like protein 2. The results of the present study provide additional information regarding the transcriptional response of the hepatopancreas to low salinity, nitrite, low pH, and high pH stress. Moreover, the discovery of several overlapping DEGs among different stressors provided a better understanding of the molecular function of the hepatopancreas.