Machine learning prediction of erosion resistance of laser-clad coatings on martensitic stainless steel for steam turbine blades

材料科学 涡轮叶片 马氏体不锈钢 激光功率缩放 汽轮机 梯度升压 表面粗糙度 涂层 涡轮机 随机森林 机械工程 冶金 马氏体 复合材料 激光器 机器学习 计算机科学 工程类 微观结构 光学 物理
作者
Indranil Mandal,Vidyapati Kumar,Partha Saha
出处
期刊:Journal of micromanufacturing [SAGE]
标识
DOI:10.1177/25165984251317028
摘要

Steam turbine blades made of martensitic stainless steel (SS 420) are susceptible to erosion due to the impact from the water droplets. Laser-directed energy deposition (L-DED) process can enhance erosion resistance of steam turbine blades by laser-clad protective coatings, but the process intricacies arising from multiple parameters require some predictive modelling. This study developed machine learning models to predict surface roughness (SR), cumulative mean depth of erosion (CMDE) and hardness of SS 420 substrates coated by L-DED process with Ni-Al, Ni-Al-TiC and Stellite 6 powders. The input parameters were laser power, scanning speed, powder flow rate, energy density, time, initial temperature, feeding rate and distance from the surface. Seven algorithms, namely, Linear Regression, Decision Tree, Random Forest, Gradient Boosting (GB), K-Nearest Neighbours, AdaBoost and XGBoost, were trained on the experimental data. Cross-validation assessed the model accuracy. XGBoost model showed the lowest mean absolute error and the highest R 2 for predicting SR. GB was the most accurate for CMDE and hardness. By demonstrating accurate prediction of the properties of L-DED coating using machine learning, this study provides a framework to optimize the L-DED process for enhanced erosion resistance of steam turbine blades. Further research can assess model performance for new parameter combinations and materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助科研通管家采纳,获得20
刚刚
Akim应助科研通管家采纳,获得10
刚刚
张无缺发布了新的文献求助10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
zho发布了新的文献求助10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
我是老大应助锋1采纳,获得10
2秒前
Lotus发布了新的文献求助10
2秒前
Sunny发布了新的文献求助10
4秒前
pipi发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
鄢廷芮发布了新的文献求助10
7秒前
华仔应助明理谷雪采纳,获得10
8秒前
炙热的芒果完成签到,获得积分10
8秒前
lxl发布了新的文献求助10
9秒前
科研通AI5应助月亮明星采纳,获得10
9秒前
潇潇微雨发布了新的文献求助10
9秒前
fang发布了新的文献求助10
10秒前
bkagyin应助紧张的寒梦采纳,获得10
11秒前
11秒前
12秒前
嘿嘿发布了新的文献求助10
12秒前
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475940
求助须知:如何正确求助?哪些是违规求助? 3067572
关于积分的说明 9104917
捐赠科研通 2759160
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204