Unmixing Autoencoder for Image Reconstruction from Hyperspectral Data

高光谱成像 自编码 模式识别(心理学) 化学 人工智能 光谱成像 化学成像 生物系统 计算机科学 人工神经网络 光学 物理 生物
作者
Xuyang Liu,Chaoshu Duan,Wensheng Cai,Xueguang Shao
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c02720
摘要

Due to the complexity of samples and the limitations in spatial resolution, the spectra in hyperspectral imaging (HSI) are generally contributed to by multiple components, making univariate analysis ineffective. Although feature extraction methods have been applied, the chemical meaning of the compressed variables is difficult to interpret, limiting their further applications. An unmixing autoencoder (UAE) was developed in this work for the separation of the mixed spectra in HSI. The proposed model is composed of an encoder and a fully connected (FC) layer. The former is used to compress the input spectrum into several variables, and the latter is employed to reconstruct the spectrum. Combining reconstruction loss and sparse regularization, the weights and the spectral profiles of the components will be encoded in the compressed variables and the connection weights of FC, respectively. A simulated and three experimental HSI data sets were adopted to investigate the performance of the UAE model. The spectral components were successfully obtained, from which the handwriting under papers was revealed from the image of near-infrared (NIR) diffusive reflectance spectroscopy, and the images of lipids, proteins, and nucleic acids were reconstructed from the Raman and stimulated Raman scattering (SRS) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝飞飞完成签到,获得积分10
刚刚
qqz完成签到,获得积分10
1秒前
花花应助淡淡蛋挞采纳,获得10
2秒前
华仔应助虚幻靖易采纳,获得10
2秒前
3秒前
yingying发布了新的文献求助10
4秒前
可爱的函函应助香蕉静芙采纳,获得10
5秒前
张浩发布了新的文献求助10
5秒前
6秒前
fei发布了新的文献求助150
6秒前
7秒前
7秒前
8秒前
依灵完成签到,获得积分10
8秒前
8秒前
充电宝应助mariawang采纳,获得10
9秒前
王哈哈关注了科研通微信公众号
10秒前
kkdkg发布了新的文献求助10
10秒前
时笙发布了新的文献求助10
10秒前
苏利文完成签到,获得积分10
11秒前
11秒前
小二郎应助尔尔采纳,获得30
11秒前
12秒前
小丑鱼儿发布了新的文献求助10
12秒前
13秒前
Rubby应助Sissi采纳,获得10
13秒前
14秒前
隐形夕阳发布了新的文献求助50
15秒前
搞学术的发布了新的文献求助10
15秒前
Freddie发布了新的文献求助10
17秒前
淡淡梦容发布了新的文献求助10
17秒前
17秒前
mmol发布了新的文献求助10
18秒前
可靠的冰烟完成签到,获得积分10
18秒前
Ava应助kkdkg采纳,获得10
19秒前
Bio应助AA简单男孩采纳,获得26
20秒前
搜集达人应助虚幻靖易采纳,获得10
20秒前
Notdodead应助yyds采纳,获得10
20秒前
科研通AI2S应助Lu采纳,获得10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021