Unmixing Autoencoder for Image Reconstruction from Hyperspectral Data

高光谱成像 自编码 模式识别(心理学) 化学 人工智能 光谱成像 化学成像 生物系统 计算机科学 人工神经网络 光学 物理 生物
作者
Xuyang Liu,Chaoshu Duan,Wensheng Cai,Xueguang Shao
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (52): 20354-20361 被引量:5
标识
DOI:10.1021/acs.analchem.4c02720
摘要

Due to the complexity of samples and the limitations in spatial resolution, the spectra in hyperspectral imaging (HSI) are generally contributed to by multiple components, making univariate analysis ineffective. Although feature extraction methods have been applied, the chemical meaning of the compressed variables is difficult to interpret, limiting their further applications. An unmixing autoencoder (UAE) was developed in this work for the separation of the mixed spectra in HSI. The proposed model is composed of an encoder and a fully connected (FC) layer. The former is used to compress the input spectrum into several variables, and the latter is employed to reconstruct the spectrum. Combining reconstruction loss and sparse regularization, the weights and the spectral profiles of the components will be encoded in the compressed variables and the connection weights of FC, respectively. A simulated and three experimental HSI data sets were adopted to investigate the performance of the UAE model. The spectral components were successfully obtained, from which the handwriting under papers was revealed from the image of near-infrared (NIR) diffusive reflectance spectroscopy, and the images of lipids, proteins, and nucleic acids were reconstructed from the Raman and stimulated Raman scattering (SRS) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ajun完成签到,获得积分10
1秒前
小远远应助茶茶采纳,获得10
2秒前
2秒前
tanrui发布了新的文献求助10
2秒前
肥团完成签到 ,获得积分20
3秒前
4秒前
微醺白桃味完成签到,获得积分20
5秒前
安详的自中完成签到,获得积分10
5秒前
TOP完成签到 ,获得积分10
5秒前
6秒前
kl小子发布了新的文献求助10
8秒前
8秒前
10秒前
Itsccy发布了新的文献求助10
11秒前
11秒前
wanganjing发布了新的文献求助10
14秒前
15秒前
卷筒洗衣机完成签到,获得积分10
15秒前
16秒前
meng应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Hanoi347应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
sevenhill应助科研通管家采纳,获得10
17秒前
17秒前
赘婿应助科研通管家采纳,获得30
17秒前
妩媚的海应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
sevenhill应助科研通管家采纳,获得10
17秒前
sevenhill应助科研通管家采纳,获得10
17秒前
18秒前
orixero应助科研通管家采纳,获得10
18秒前
VDC应助科研通管家采纳,获得30
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
Hanoi347应助科研通管家采纳,获得10
18秒前
sevenhill应助科研通管家采纳,获得10
18秒前
spc68应助科研通管家采纳,获得10
18秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291