Prognostic value of glycaemic variability for mortality in critically ill atrial fibrillation patients and mortality prediction model using machine learning

医学 心房颤动 队列 重症监护室 内科学 四分位数 比例危险模型 重症监护 多元分析 队列研究 血管病学 急诊医学 重症监护医学 置信区间
作者
Yang Chen,Zheng-kun Yang,Yang Liu,Ying X. Gue,Ziyi Zhong,Tao Chen,Feifan Wang,Garry McDowell,Bi Huang,Gregory Y. H. Lip
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12933-024-02521-7
摘要

Abstract Background The burden of atrial fibrillation (AF) in the intensive care unit (ICU) remains heavy. Glycaemic control is important in the AF management. Glycaemic variability (GV), an emerging marker of glycaemic control, is associated with unfavourable prognosis, and abnormal GV is prevalent in ICUs. However, the impact of GV on the prognosis of AF patients in the ICU remains uncertain. This study aimed to evaluate the relationship between GV and all-cause mortality after ICU admission at short-, medium-, and long-term intervals in AF patients. Methods Data was obtained from the Medical Information Mart for Intensive Care IV 3.0 database, with admissions (2008–2019) as primary analysis cohort and admissions (2020–2022) as external validation cohort. Multivariate Cox proportional hazards models, and restricted cubic spline analyses were used to assess the associations between GV and mortality outcomes. Subsequently, GV and other clinical features were used to construct machine learning (ML) prediction models for 30-day all-cause mortality after ICU admission. Results The primary analysis cohort included 8989 AF patients (age 76.5 [67.7–84.3] years; 57.8% male), while the external validation cohort included 837 AF patients (age 72.9 [65.3–80.2] years; 67.4% male). Multivariate Cox proportional hazards models revealed that higher GV quartiles were associated with higher risk of 30-day (Q3: HR 1.19, 95%CI 1.04–1.37; Q4: HR 1.33, 95%CI 1.16–1.52), 90-day (Q3: HR 1.25, 95%CI 1.11–1.40; Q4: HR 1.34, 95%CI 1.29–1.50), and 360-day (Q3: HR 1.21, 95%CI 1.09–1.33; Q4: HR 1.33, 95%CI 1.20–1.47) all-cause mortality, compared with lowest GV quartile. Moreover, our data suggests that GV needs to be contained within 20.0%. Among all ML models, light gradient boosting machine had the best performance (internal validation: AUC [0.780], G-mean [0.551], F1-score [0.533]; external validation: AUC [0.788], G-mean [0.578], F1-score [0.568]). Conclusion GV is a significant predictor of ICU short-term, mid-term, and long-term all-cause mortality in patients with AF (the potential risk stratification threshold is 20.0%). ML models incorporating GV demonstrated high efficiency in predicting short-term mortality and GV was ranked anterior in importance. These findings underscore the potential of GV as a valuable biomarker in guiding clinical decisions and improving patient outcomes in this high-risk population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱凌娇发布了新的文献求助10
1秒前
大模型应助哈哈哈采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
wmk发布了新的文献求助10
4秒前
5秒前
JamesPei应助ldz采纳,获得10
5秒前
6秒前
TT完成签到 ,获得积分10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
nozero应助科研通管家采纳,获得10
6秒前
史小菜应助科研通管家采纳,获得20
7秒前
希望天下0贩的0应助中午采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得30
7秒前
nozero应助科研通管家采纳,获得10
7秒前
平淡的万言完成签到,获得积分10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
知了发布了新的文献求助10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
nozero应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660135
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740763
捐赠科研通 2930886
什么是DOI,文献DOI怎么找? 1604684
邀请新用户注册赠送积分活动 757433
科研通“疑难数据库(出版商)”最低求助积分说明 734426