Breaking the Trade‐Off Between Electrical Conductivity and Mechanical Strength in Bulk Graphite Using Metal–Organic Framework‐Derived Precursors

材料科学 石墨烯 石墨 放电等离子烧结 纳米孔 抗弯强度 复合材料 纳米复合材料 纳米技术 电阻率和电导率 陶瓷 电气工程 工程类
作者
Yuqing Zhang,Junzhuo Wang,Yinghan Zhang,Qi Zheng,Lianjun Wang,Wan Jiang
出处
期刊:Advanced Science [Wiley]
被引量:7
标识
DOI:10.1002/advs.202416210
摘要

Abstract High‐performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF‐derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade‐off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in‐plane: 7311 S cm⁻¹, out‐of‐plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.17±5.73 MPa, compressive: 151.56±2.53 MPa). Co nanoparticles act as autocatalysts and binders, promoting strong interlayer adhesion among highly graphitized graphene layers via spark plasma sintering. The strong nano‐interfaces between graphite and Co‐create critical bridges between graphene nanosheets, facilitating highly efficient electron migration and enhanced strength and stiffness of the assembled bulk nanocomposites. Leveraging these exceptional properties, practical demonstrations highlight the immense potential of the robust material for applications demanding superior electromagnetic interference shielding and efficient heating. An innovative approach, which effectively decouples electrical conductivity from mechanical properties, paves the way for the creation of HPBGs tailored for diverse application sectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋博文完成签到,获得积分10
刚刚
欢喜怀绿完成签到,获得积分10
1秒前
2秒前
2秒前
共享精神应助smldx采纳,获得10
2秒前
Always完成签到,获得积分10
3秒前
3秒前
memedaaaah发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
平常的迎夏完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
隐形曼青应助秋澄采纳,获得10
7秒前
7秒前
9秒前
xzn发布了新的文献求助10
9秒前
hahaha发布了新的文献求助10
9秒前
9秒前
青云冰城发布了新的文献求助10
10秒前
oo发布了新的文献求助10
10秒前
10秒前
不倒翁37发布了新的文献求助10
11秒前
cmdan完成签到,获得积分10
11秒前
蓝溺完成签到,获得积分10
12秒前
邵小庆发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
桐桐应助cc采纳,获得10
14秒前
等待吐司应助欢喜代萱采纳,获得10
14秒前
ss完成签到 ,获得积分10
14秒前
刘乐发布了新的文献求助10
14秒前
柳觅夏发布了新的文献求助10
14秒前
Lucas应助芜湖芜湖采纳,获得10
15秒前
HOOW发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961