Prototype Matching Learning for Incomplete Multi-view Clustering

计算机科学 聚类分析 人工智能 匹配(统计) 模式识别(心理学) 数学 统计
作者
Honglin Yuan,Yuan Sun,Fei Zhou,Songbai Zhu,Shihua Yuan,Xiaojian You,Zhenwen Ren
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 828-841
标识
DOI:10.1109/tip.2025.3529378
摘要

As information acquisition diversifies, data is acquired and stored in increasing modalities. However, sensor failures or equipment issues can lead to partial data loss in certain views, resulting in incomplete multi-view clustering (IMVC) problems. Although some prototype-based IMVC methods have achieved satisfactory performance, almost all of these methods implicitly assume that the cross-view prototypes are aligned. However, during the generation or selection of prototypes, different networks could produce different prototypes, thereby leading to potential misalignment of prototypes across views, i.e., prototype-unaligned problem (PUP). The presence of PUP could lead to overfitting the model. Additionally, when recovering the missing data, there is uncertainty in data quality under different missing rates, which could lead to the performance instability problem (PIP). To address these issues, we propose Prototype Matching Learning for Incomplete Multi-view Clustering (PMIMC). Specifically, PMIMC leverages relational consistency learning to mitigate the heterogeneity of multi-view data. Subsequently, we design a robust prototype contrastive learning loss for the generated prototypes to reduce the effects of PUP. Finally, we propose a prototype-based imputation strategy, that aims to alleviate the instability of imputation under high missing rates. Extensive experiments demonstrate that PMIMC outperforms 13 state-of-the-art methods in terms of clustering performance and robustness. The code is available at: https: //github.com/hl-yuan/PMIMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助严笑容采纳,获得30
刚刚
AsingOne完成签到,获得积分20
刚刚
小二郎应助Ultraviolet采纳,获得10
2秒前
丘比特应助Ultraviolet采纳,获得10
2秒前
3秒前
搜集达人应助小王采纳,获得10
4秒前
JamesPei应助宣孤菱采纳,获得10
4秒前
快乐的晟睿完成签到,获得积分10
5秒前
呜呜呜发布了新的文献求助10
5秒前
ch发布了新的文献求助10
5秒前
emmm完成签到,获得积分10
7秒前
liang完成签到,获得积分10
7秒前
Hello应助AsingOne采纳,获得10
7秒前
joyce930728完成签到 ,获得积分10
8秒前
00发布了新的文献求助10
9秒前
不安慕蕊完成签到,获得积分10
10秒前
10秒前
眼睛大的乐儿完成签到,获得积分10
10秒前
11秒前
Owen应助songvv采纳,获得10
12秒前
14秒前
无花果应助hcsdgf采纳,获得10
17秒前
18秒前
小李顺利毕业完成签到,获得积分10
18秒前
h41692011完成签到 ,获得积分10
19秒前
橙子发布了新的文献求助10
20秒前
zzzz完成签到,获得积分10
20秒前
21秒前
21秒前
24秒前
24秒前
对于发布了新的文献求助20
25秒前
劲爆巧克力完成签到,获得积分10
25秒前
纯真保温杯完成签到 ,获得积分10
25秒前
青妤完成签到,获得积分20
26秒前
27秒前
霖宸羽完成签到,获得积分10
27秒前
可爱因子发布了新的文献求助10
28秒前
娃娃菜发布了新的文献求助10
28秒前
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792