Simultaneous Classification of Objects with Unknown Rejection (SCOUR) Using Infra-Red Sensor Imagery

人工智能 分类器(UML) 计算机科学 机器学习 模式识别(心理学) 班级(哲学) 贝叶斯网络 目标检测 贝叶斯概率 对象(语法) 自动目标识别 回归 数学 合成孔径雷达 统计
作者
Adam Cuellar,Daniel Brignac,Abhijit Mahalanobis,Wasfy B. Mikhael
出处
期刊:Sensors [MDPI AG]
卷期号:25 (2): 492-492
标识
DOI:10.3390/s25020492
摘要

Recognizing targets in infra-red images is an important problem for defense and security applications. A deployed network must not only recognize the known classes, but it must also reject any new or unknown objects without confusing them to be one of the known classes. Our goal is to enhance the ability of existing (or pretrained) classifiers to detect and reject unknown classes. Specifically, we do not alter the training strategy of the main classifier so that its performance on known classes remains unchanged. Instead, we introduce a second network (trained using regression) that uses the decision of the primary classifier to produce a class conditional score that indicates whether an input object is indeed a known object. This is performed in a Bayesian framework where the classification confidence of the primary network is combined with the class-conditional score of the secondary network to accurately separate the unknown objects from the known target classes. Most importantly, our method does not require any examples of OOD imagery to be used for training the second network. For illustrative purposes, we demonstrate the effectiveness of the proposed method using the CIFAR-10 dataset. Ultimately, our goal is to classify known targets in infra-red images while improving the ability to reject unknown classes. Towards this end, we train and test our method on a public domain medium-wave infra-red (MWIR) dataset provided by the US Army for the development of automatic target recognition (ATR) algorithms. The results of this experiment show that the proposed method outperforms other state-of-the-art methods in rejecting the unknown target types while accurately classifying the known ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lala完成签到,获得积分10
刚刚
sunwending完成签到,获得积分10
刚刚
1秒前
lily完成签到,获得积分10
2秒前
Chris完成签到,获得积分10
2秒前
研友Bn完成签到 ,获得积分10
2秒前
wenjing发布了新的文献求助10
3秒前
繁华发布了新的文献求助10
3秒前
11完成签到,获得积分10
4秒前
乐观荔枝完成签到,获得积分20
4秒前
nicolaslcq完成签到,获得积分10
4秒前
6秒前
z_8023完成签到,获得积分10
7秒前
FashionBoy应助犹豫的忆梅采纳,获得10
7秒前
奋斗的暖阳完成签到,获得积分10
9秒前
9527驳回了Hello应助
9秒前
高高ai发布了新的文献求助10
9秒前
luckyd完成签到 ,获得积分0
10秒前
11秒前
Archie完成签到 ,获得积分10
11秒前
研究僧完成签到,获得积分10
11秒前
深情安青应助chloe采纳,获得10
11秒前
enoki完成签到,获得积分10
12秒前
繁华完成签到,获得积分20
12秒前
沙克几十块完成签到,获得积分10
12秒前
Achilles完成签到,获得积分10
13秒前
娇气的天亦完成签到 ,获得积分10
13秒前
14秒前
羊青丝完成签到,获得积分10
15秒前
所愿所得应助高糕采纳,获得10
15秒前
抹茶肥肠完成签到,获得积分10
15秒前
斯文败类应助yiyi采纳,获得10
15秒前
CQ关注了科研通微信公众号
15秒前
16秒前
nwpuwangbo完成签到,获得积分10
16秒前
Czy完成签到,获得积分10
17秒前
wenbo完成签到,获得积分0
18秒前
iNk应助喻白玉采纳,获得10
18秒前
菜鸟jie完成签到,获得积分10
18秒前
Orange应助wss采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402392
求助须知:如何正确求助?哪些是违规求助? 3009243
关于积分的说明 8835794
捐赠科研通 2696169
什么是DOI,文献DOI怎么找? 1477736
科研通“疑难数据库(出版商)”最低求助积分说明 683235
邀请新用户注册赠送积分活动 676910