New Framework of Robust Image Encryption

计算机科学 加密 图像(数学) 计算机视觉 人工智能 计算机安全 理论计算机科学 人机交互
作者
Lin Huang,Chuan Qin,Guorui Feng,Xiangyang Luo,Xinpeng Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3712601
摘要

Designing an end-to-end encryption method for images using the nonlinear properties of deep neural networks (DNNs) has gradually attracted the attention of researchers. In this paper, we introduce a new framework for DNN-based image encryption that embeds a plaintext image as a secret message into a random noise to obtain a ciphertext image. Based on this, we propose an end-to-end robust image encryption method based on the invertible neural network (INN), which can realize secure encryption and resistance to common image processing attacks. Specifically, the INN is exploited as the shared-parameter encoder and decoder to achieve end-to-end encryption and decryption. The ciphertext image can be obtained through the forward process of the INN by inputting the plaintext image and the key, while the decrypted image can be obtained through the backward process of the INN by inputting the ciphertext image and the key. To enhance the security of our method, we design an information reinforcement module to guarantee the encryption effect and the sensitivity of the key. In addition, to improve the robustness of our method, an attack layer is employed for noise simulation training. Experimental results show that our method not only can realize secure encryption but also can achieve the robustness such as resisting JPEG compression, Gaussian noise, scaling, mean filtering, and Gaussian blurring effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89KGOn发布了新的文献求助10
刚刚
xiaox关注了科研通微信公众号
刚刚
rui发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
上官若男应助小郭采纳,获得10
4秒前
5秒前
ruru发布了新的文献求助10
5秒前
小黑发布了新的文献求助10
5秒前
淑芬关注了科研通微信公众号
6秒前
科研通AI2S应助楚小儿采纳,获得10
6秒前
糟糕的语芹完成签到 ,获得积分10
7秒前
Hello应助SiO2采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
ggtry完成签到,获得积分10
9秒前
瞬光完成签到,获得积分10
9秒前
11发布了新的文献求助10
9秒前
米米碎片发布了新的文献求助10
9秒前
9秒前
9秒前
Shirley完成签到,获得积分10
9秒前
灯飞发布了新的文献求助10
10秒前
蛋挞发布了新的文献求助10
10秒前
10秒前
852应助开心使者采纳,获得10
11秒前
研友_89KGOn完成签到,获得积分10
11秒前
monned发布了新的文献求助10
12秒前
ChenYX完成签到,获得积分10
12秒前
13秒前
木木给木木的求助进行了留言
13秒前
14秒前
14秒前
14秒前
15秒前
17秒前
17秒前
芦同学完成签到,获得积分10
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978