Development of a dynamic counterfactual risk stratification strategy for newly diagnosed acute myeloid leukemia patients treated with venetoclax and azacitidine

阿扎胞苷 威尼斯人 反事实思维 髓系白血病 危险分层 肿瘤科 医学 内科学 癌症研究 白血病 心理学 生物 社会心理学 遗传学 基因表达 慢性淋巴细胞白血病 基因 DNA甲基化
作者
N Islam,Justin Dale,Jamie S. Reuben,Karan Sapiah,James W Coates,Frank R Markson,Jingjing Zhang,Lezhou Wu,Maura Gasparetto,Brett M. Stevens,Sarah Staggs,William J. Showers,Monica Ransom,Jayesh Desai,Uday Kulkarni,Krysta Engel,Craig T. Jordan,Michael Boyiadzis,Clayton A. Smith
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.11.25.24317750
摘要

Objective The objective of this study was to develop a flexible risk model (RM) stratification strategy for Acute Myeloid Leukemia (AML) that is specific for the new standard of care venetoclax plus azacitidine (ven/aza), captures disease heterogeneity, and addresses a range of real-world data issues. Materials and Methods A series of tunable RMs based on a dynamic counterfactual machine learning (ML) strategy that utilized next generation sequencing, cytogenetics, flow cytometry, and other features of the diagnostic AML samples were developed and tested on a single institutional cohort of 316 newly diagnosed patients treated initially with ven/aza. Results Favorable, Intermediate, and Adverse risk groups were identified in a series of novel RMs derived using ML models for overall survival (OS) and event free survival (EFS). Most, but not all models, demonstrated equitable patient distribution into the different risk categories (~20%-40% in each group) with significant separation between categories (Log-Rank based p-values <0.001), and with predictability computed by survival AUC values in the ~0.60-0.70 range. Discussion and Conclusion The general strategy employed here is specific for AML patients treated with ven/aza, is based on a wide range of diagnostic AML pathology features, considers feature interactions, addresses data missingness, sparsity, and the confounding effects of allogeneic hematopoietic cell transplant . It is also readily tunable through simple coding and context specific parameter updates, and adaptable to reflect different use case needs. This strategy represents a new approach to developing more effective RMs for AML and possibly other diseases as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summer完成签到 ,获得积分10
2秒前
yao chen完成签到,获得积分10
4秒前
伊一完成签到,获得积分10
16秒前
mp5完成签到,获得积分10
17秒前
二巨头完成签到,获得积分10
18秒前
2012csc完成签到 ,获得积分10
23秒前
泡泡完成签到 ,获得积分10
23秒前
枫威完成签到 ,获得积分10
25秒前
28秒前
聪明的书翠完成签到,获得积分10
31秒前
鲤鱼越越完成签到 ,获得积分10
32秒前
33秒前
和气生财君完成签到 ,获得积分10
34秒前
36秒前
义气剑通完成签到 ,获得积分10
37秒前
asdfqwer完成签到 ,获得积分0
38秒前
海盐气泡水完成签到 ,获得积分10
41秒前
zhang完成签到 ,获得积分10
42秒前
文艺的初南完成签到 ,获得积分10
47秒前
包子牛奶完成签到,获得积分10
48秒前
牛奶煮萝莉完成签到 ,获得积分10
51秒前
小彭陪小崔读个研完成签到 ,获得积分10
51秒前
深情安青应助Kair采纳,获得10
56秒前
1分钟前
科研通AI2S应助郑恩熙采纳,获得10
1分钟前
陈皮完成签到 ,获得积分10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
劲秉应助科研通管家采纳,获得10
1分钟前
劲秉应助科研通管家采纳,获得10
1分钟前
ccc应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
YingyingFan应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
热心路人应助科研通管家采纳,获得10
1分钟前
劲秉应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674546
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787162
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611923
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488