Predictive Maintenance and Fault Detection for Motor Drive Control Systems in Industrial Robots Using CNN-RNN-Based Observers

卷积神经网络 计算机科学 循环神经网络 故障检测与隔离 过程(计算) 人工智能 深度学习 机器人 断层(地质) 控制工程 机器学习 人工神经网络 工程类 执行机构 地震学 地质学 操作系统
作者
Chanthol Eang,Seungjae Lee
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (1): 25-25 被引量:5
标识
DOI:10.3390/s25010025
摘要

This research work presents an integrated method leveraging Convolutional Neural Networks and Recurrent Neural Networks (CNN-RNN) to enhance the accuracy of predictive maintenance and fault detection in DC motor drives of industrial robots. We propose a new hybrid deep learning framework that combines CNNs with RNNs to improve the accuracy of fault prediction that may occur on a DC motor drive during task processing. The CNN-RNN model determines the optimal maintenance strategy based on data collected from sensors, such as air temperature, process temperature, rotational speed, and so forth. The proposed AI model has the capacity to make highly accurate predictions and detect faults in DC motor drives, thus helping to ensure timely maintenance and reduce operational breakdowns. As a result, comparative analysis reveals that the proposed framework can achieve higher accuracy than the current existing method of combining CNN with Long Short-Term Memory networks (CNN-LSTM) as well as other CNNs, LSTMs, and traditional methods. The proposed CNN-RNN model can provide early fault detection for motor drives of industrial robots with a simpler architecture and lower complexity of the model compared to CNN-LSTM methods, which can enable the model to process faster than CNN-LSTM. It effectively extracts dynamic features and processes sequential data, achieving superior accuracy and precision in fault diagnosis, which can make it a practical and efficient solution for real-time fault detection in motor drive control systems of industrial robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
咚咚完成签到,获得积分20
2秒前
王琳完成签到,获得积分10
3秒前
4秒前
4秒前
111完成签到,获得积分10
5秒前
烟花应助科研达人采纳,获得10
5秒前
6秒前
Autin完成签到,获得积分0
7秒前
栗子完成签到,获得积分10
7秒前
8秒前
只道寻常完成签到 ,获得积分10
9秒前
12秒前
12秒前
科研01应助毅诚菌采纳,获得10
14秒前
烂漫吐司完成签到,获得积分10
16秒前
科研通AI5应助傲娇以寒采纳,获得10
17秒前
bkagyin应助研友_5Y9775采纳,获得10
17秒前
17秒前
青檬完成签到 ,获得积分10
18秒前
qifunongsuo1213完成签到 ,获得积分10
18秒前
Jasper应助要减肥中蓝采纳,获得10
18秒前
大方小松鼠完成签到,获得积分10
19秒前
Sharon完成签到,获得积分10
19秒前
20秒前
20秒前
22秒前
科研通AI2S应助zhubk采纳,获得10
25秒前
jzmupyj完成签到,获得积分10
25秒前
gyhk发布了新的文献求助10
26秒前
lucky完成签到,获得积分10
26秒前
粗犷的契发布了新的文献求助10
29秒前
111完成签到,获得积分10
29秒前
小蘑菇应助伶俐的从菡采纳,获得10
30秒前
小星星应助shayulajiao采纳,获得10
31秒前
华仔应助笨笨松采纳,获得10
31秒前
32秒前
xiaolu完成签到,获得积分10
32秒前
33秒前
啾啾栖鸟过完成签到,获得积分20
34秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714159
求助须知:如何正确求助?哪些是违规求助? 3261707
关于积分的说明 9920043
捐赠科研通 2975447
什么是DOI,文献DOI怎么找? 1631572
邀请新用户注册赠送积分活动 774066
科研通“疑难数据库(出版商)”最低求助积分说明 744633