Electromagnetic metamaterial agent

计算机科学 人机交互 机器人 超材料 背景(考古学) 人工智能 物理 古生物学 光电子学 生物
作者
Shengguo Hu,Ming‐Yi Li,Jiawen Xu,Hongrui Zhang,Shanghang Zhang,Tie Jun Cui,Philipp del Hougne,Hengxin Ruan
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41377-024-01678-w
摘要

Abstract Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality. Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent) endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting emulating an ambient-assisted living context (including human requests in natural language), our metaAgent prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and learns from past experience based on human feedback.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵向珊发布了新的文献求助50
刚刚
刚刚
科研通AI2S应助北海采纳,获得10
刚刚
刚刚
Lin发布了新的文献求助10
刚刚
coesite发布了新的文献求助10
刚刚
zzy发布了新的文献求助10
刚刚
1秒前
1秒前
Hello应助伶俐惜萱采纳,获得10
1秒前
塞上牧羊完成签到 ,获得积分10
1秒前
2秒前
haha发布了新的文献求助10
3秒前
3秒前
4秒前
xia完成签到,获得积分10
4秒前
伟峰完成签到,获得积分20
4秒前
5秒前
sui发布了新的文献求助10
5秒前
田様应助撒拉溪吧采纳,获得30
5秒前
5秒前
6秒前
毒毛KK发布了新的文献求助10
6秒前
windyhill发布了新的文献求助10
6秒前
文艺代灵完成签到,获得积分10
6秒前
cdercder应助Gilana采纳,获得20
6秒前
莫尼安关注了科研通微信公众号
7秒前
7秒前
7秒前
赘婿应助欢呼谷冬采纳,获得10
8秒前
伟峰发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
科目三应助时安采纳,获得10
9秒前
高贵向珊完成签到,获得积分10
9秒前
林远山发布了新的文献求助10
9秒前
10秒前
10秒前
深藏blue完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558485
求助须知:如何正确求助?哪些是违规求助? 3133428
关于积分的说明 9402162
捐赠科研通 2833457
什么是DOI,文献DOI怎么找? 1557529
邀请新用户注册赠送积分活动 727458
科研通“疑难数据库(出版商)”最低求助积分说明 716324