DDI-GPT: Explainable Prediction of Drug-Drug Interactions using Large Language Models enhanced with Knowledge Graphs

药品 计算机科学 药理学 医学
作者
Chengqi Xu,Olivier Elemento,Krishna C. Bulusu,Heng Pan
标识
DOI:10.1101/2024.12.06.627266
摘要

Identifying potential drug-drug interactions (DDIs) before clinical use is essential for patient safety yet remains a significant challenge in drug development. We presented DDI-GPT, a deep learning framework that predicts DDIs by combining knowledge graphs (KGs) and pre-trained large language models (LLMs), enabling early detection of potential drug interactions. We demonstrated that DDI-GPT outperforms current state-of-the-art methods by capturing contextual dependencies between biomedical entities to infer potential DDIs. Through feature attribution methods, we show that our explainable deep learning (DL) models enhance the quality of explanations on the pathways and interactome networks. Using TwoSIDES as our benchmark dataset, DDI-GPT achieved the best performance of 0.964 in AUROC compared with existing DL methods. We also applied DDI-GPT to perform zero-shot prediction on 9,480 DDI records, encompassing 442 distinct drugs from the FDA Adverse Event Reporting System. DDI-GPT can attain a high accuracy of in 0.84 AUROC, with an improvement of 14% compared to the best previously published method. We explored model interpretations on predicted DDIs involving Bruton tyrosine kinase (BTK) inhibitors and uncovered CYP3A-enriched signals underlying the contaminant use of BTK inhibitors with other drugs leading to toxicity. Altogether, DDI-GPT, implemented as both a web server platform and a software package, identifies DDI events and offers a deep learning tool for drug safety use with expandable features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaLaC完成签到,获得积分10
1秒前
1秒前
三金完成签到,获得积分10
3秒前
忆夏应助鳗鱼邪欢采纳,获得10
3秒前
w。发布了新的文献求助10
4秒前
joanna完成签到,获得积分10
4秒前
nanananan发布了新的文献求助10
4秒前
5秒前
独特绿蓉发布了新的文献求助10
5秒前
Gakay发布了新的文献求助10
5秒前
科研小驴发布了新的文献求助10
6秒前
111111完成签到,获得积分10
6秒前
6秒前
army77完成签到,获得积分10
8秒前
科研通AI2S应助after采纳,获得10
9秒前
深情安青应助George Will采纳,获得10
10秒前
sixlla发布了新的文献求助10
11秒前
天高任鸟飞完成签到,获得积分10
13秒前
Orange应助dang采纳,获得30
14秒前
15秒前
CipherSage应助鱿鱼阿章采纳,获得10
15秒前
16秒前
Jasper应助科研通管家采纳,获得30
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
SHENJING发布了新的文献求助10
16秒前
jia应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
HEIKU应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
巴拉巴拉应助Gakay采纳,获得20
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
独特绿蓉完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助科研小驴采纳,获得10
21秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478