Deep-USIpred: identifying substrates of ubiquitin protein ligases E3 and deubiquitinases with pretrained protein embedding and bayesian neural network

深度学习 人工智能 计算机科学 泛素连接酶 泛素 机器学习 人工神经网络 药物发现 嵌入 内德4 深层神经网络 计算生物学 生物信息学 生物 生物化学 基因
作者
Jia Wang,Gui-Qing Pan,Jianqiang Li,Xuequn Shang,Zhu‐Hong You,Yuan Huang
标识
DOI:10.1109/bibm58861.2023.10385619
摘要

Identifying the substrates of ubiquitin protein ligase (E3) and deubiquitinases (DUB) contributes to the discovery of potential therapeutic targets for diseases. However, experimental identification of E3/DUB-substrate interactions is costly and time-consuming. Current computational methods for predicting E3/DUB-substrate interactions rely heavily on specific domain knowledge and involve complex and diverse biological data processing. To address this challenge, we proposed a deep learning prediction model, named Deep-USIpred, which predicts E3/DUB-substrate interactions using protein sequences. The proposed Deep-USIpred model encodes protein sequences with a pretrained model and utilizes 1DCNN-BNN deep learning algorithm to make a robust prediction model. We evaluated the performance of the proposed model on real datasets, and our experimental results show that it can achieve excellent prediction performance on the tasks of ESI and DSI. Our proposed method provides a promising alternative for the prediction of E3/DUB-substrate interactions, which has the potential to accelerate drug discovery for various diseases. The source code and dataset are available at https://github.com/PGTSING/Deep-USIpred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马完成签到,获得积分10
刚刚
华仔应助昵称采纳,获得10
1秒前
1秒前
Siavy完成签到,获得积分10
2秒前
怕黑千易发布了新的文献求助10
2秒前
2秒前
2秒前
彩色的冷之完成签到,获得积分10
3秒前
菜小芽完成签到 ,获得积分10
3秒前
kiki发布了新的文献求助10
4秒前
Jing完成签到,获得积分10
4秒前
5秒前
halabouqii发布了新的文献求助10
6秒前
有梦想的咸鱼完成签到,获得积分10
7秒前
秋风今是完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
嗯嗯完成签到,获得积分20
11秒前
HM发布了新的文献求助10
12秒前
dd完成签到 ,获得积分10
13秒前
上官若男应助等待的白容采纳,获得10
13秒前
王珏关注了科研通微信公众号
15秒前
biozy完成签到,获得积分10
16秒前
17秒前
18秒前
Sj泽发布了新的文献求助10
18秒前
博修发布了新的文献求助10
20秒前
昵称发布了新的文献求助10
21秒前
Jasper应助科研通管家采纳,获得10
22秒前
Dada应助科研通管家采纳,获得30
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
llchen完成签到,获得积分0
24秒前
25秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150