Designer Nanoreactors for Bioorthogonal Catalysis

纳米反应器 纳米技术 纳米材料基催化剂 生物正交化学 催化作用 多孔性 化学 材料科学 纳米颗粒 组合化学 点击化学 有机化学 生物化学
作者
Amit Kumar,In Su Lee
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.3c00735
摘要

ConspectusThe evolutionary complexity of compartmentalized biostructures (such as cells and organelles) endows life-sustaining multistep chemical cascades and intricate living functionalities. Relatively, within a very short time span, a synthetic paradigm has resulted in tremendous growth in controlling the materials at different length scales (molecular, nano, micro, and macro), improving mechanistic understanding and setting the design principals toward different compositions, configurations, and structures, and in turn fine-tuning their optoelectronic and catalytic properties for targeted applications. Bioorthogonal catalysis offers a highly versatile toolkit for biochemical modulation and the capability to perform new-to-nature reactions inside living systems, endowing augmented functions. However, conventional catalysts have limitations to control the reactions under physiological conditions due to the hostile bioenvironment. The present account details the development of bioapplicable multicomponent designer nanoreactors (NRs), where the compositions, morphologies, interfacial active sites, and microenvironments around different metal nanocatalysts can be precisely controlled by novel nanospace-confined chemistries. Different architectures of porous, hollow, and open-mouth silica-based nano-housings facilitate the accommodation, protection, and selective access of different nanoscale metal-based catalytic sites. The modular porosity/composition, optical transparency, thermal insulation, and nontoxicity of silica are highly useful. Moreover, large macropores or cavities can also be occupied by enzymes (for chemoenzymatic cascades) and selectivity enhancers (for stimuli-responsive gating) along with the metal nanocatalysts. Further, it is crucial to selectively activate and control catalytic reactions by a remotely operable biocompatible energy source. Integration of highly coupled plasmonic (Au) components having few-nanometer structural features (gaps, cavities, and junctions as electromagnetic hot-spots) endows an opportunity to efficiently harness low-power NIR light and selectively supply energy to the interfacial catalytic sites through localized photothermal and electronic effects. Different plasmonically integrated NRs with customizable plasmonic-catalytic components, cavities inside bilayer nanospaces, and metal-laminated nanocrystals inside hollow silica can perform NIR-/light-induced catalytic reactions in complex media including living cells. In addition, magnetothermia-induced NRs by selective growth of catalytic metals on a pre-installed superparamagnetic iron-oxide core inside a hollow-porous silica shell endowed the opportunity to apply AMF as a bioorthogonal stimulus to promote catalytic reactions. By combining "plasmonic-catalytic" and "magnetic-catalytic" components within a single NR, two distinct reaction steps can be desirably controlled by two energy sources (NIR light and AMF) of distinct energy regimes. The capability to perform multistep organic molecular transformations in harmony with the natural living system will reveal novel reaction schemes for in cellulo synthesis of active drug and bioimaging probes. Well-designed nanoscale discrete architectures of NRs can facilitate spatiotemporal control over abiotic chemical synthesis without adversely affecting the cell viability. However, in-depth understanding of heterogeneous surface catalytic reactions, rate induction mechanisms, selectivity control pathways, and targeted nanobio interactions is necessary. The broad field of biomedical engineering can hugely benefit from the aid of novel nanomaterials with chemistry-based designs and the synthesis of engineered NRs performing unique bioorthogonal chemistry functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文字头-D发布了新的文献求助10
1秒前
文静的摩托完成签到,获得积分10
3秒前
3秒前
3秒前
干净鸡翅完成签到,获得积分10
3秒前
3秒前
Morch2021完成签到,获得积分10
3秒前
深情安青应助积极的Cindy采纳,获得50
4秒前
FashionBoy应助戴岱采纳,获得10
4秒前
知知发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
儒雅从筠发布了新的文献求助10
5秒前
852应助Theone采纳,获得10
5秒前
5秒前
情怀应助damieob采纳,获得10
6秒前
陈浩南xy完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
兴奋的肉丝完成签到,获得积分10
8秒前
蓦然回首发布了新的文献求助10
8秒前
Lmyznl完成签到 ,获得积分10
9秒前
研友_12345678完成签到,获得积分10
9秒前
科尔完成签到,获得积分10
10秒前
Z丶发布了新的文献求助10
10秒前
10秒前
YL应助DKL采纳,获得20
10秒前
七安发布了新的文献求助10
11秒前
所所应助pandedad采纳,获得10
11秒前
12秒前
还活着发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
CodeCraft应助songsong丿采纳,获得10
12秒前
晚风完成签到,获得积分10
12秒前
13秒前
damieob完成签到,获得积分20
14秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541