Uncertainty, Efficiency, and Stability of Mixed Traffic Flow: Stochastic Model-Based Analyses

参数统计 计算机科学 理论(学习稳定性) 模拟 环境科学 控制理论(社会学) 汽车工程 工程类 数学 统计 控制(管理) 人工智能 机器学习
作者
Liang Lu,Fangfang Zheng,Xiaobo Liu
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981231215338
摘要

This paper proposes a stochastic model for mixed traffic consisting of human-driven vehicles (HVs), connected automated vehicles (CAVs), and degraded connected automated vehicles (DCAVs). The model addresses the issue that most of the current literature ignores: the degradation of CAVs, and the heterogeneity and uncertainty of HVs, CAVs, and DCAVs. The source of uncertainty was the heterogeneous behavior of HVs, CAVs, and DCAVs, captured using vehicle-specific car-following relations, that is, parametric uncertainty. The proposed model allowed for the explicit investigation of the uncertainty, efficiency, and stability of mixed traffic under various CAV penetration rates, different positions of CAVs in the traffic stream, and the different degradation levels of CAVs. The numerical experiment results showed that a larger CAV penetration rate helped to reduce uncertainty and improve the efficiency and stability of traffic flow. Furthermore, we investigated the impact of different position combinations of CAVs in the mixed traffic stream on traffic performance under four scenarios: 1) CAVs randomly distributed in the traffic stream, 2) CAVs forming a platoon traveling in the front of the traffic stream, 3) CAVs forming a platoon traveling in the middle of the traffic stream, and 4) CAVs forming a platoon traveling in the rear of the traffic stream. The results demonstrated that Scenario 2 gave the best performance in reducing uncertainty and improving efficiency and stability under different CAV penetration rates, whereas Scenario 4 performed the worst. Moreover, increasing degradation levels of CAVs negatively affected the reduction of uncertainty and improvement of efficiency and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chrisio完成签到,获得积分10
4秒前
jason完成签到 ,获得积分10
5秒前
瘾迷者发布了新的文献求助10
5秒前
夏天特慢发布了新的文献求助10
5秒前
momo发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
戚小发布了新的文献求助30
8秒前
今后应助xing采纳,获得10
8秒前
星辰大海应助科研采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
共享精神应助李卓航采纳,获得10
9秒前
MO完成签到,获得积分10
10秒前
清欢发布了新的文献求助10
10秒前
心灵美平彤完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
学霸土豆发布了新的文献求助10
12秒前
悦耳的灵发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
共享精神应助YuLu采纳,获得10
17秒前
祖乐萱完成签到,获得积分10
18秒前
18秒前
雍雍发布了新的文献求助10
18秒前
19秒前
19秒前
努力努力完成签到,获得积分10
19秒前
19秒前
科研通AI6应助夏天特慢采纳,获得10
20秒前
jason0023发布了新的文献求助10
20秒前
20秒前
大模型应助怕黑剑封采纳,获得10
21秒前
李卓航发布了新的文献求助10
21秒前
取名叫做利完成签到,获得积分10
22秒前
kdjc完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714