Uncertainty, Efficiency, and Stability of Mixed Traffic Flow: Stochastic Model-Based Analyses

参数统计 计算机科学 理论(学习稳定性) 模拟 环境科学 控制理论(社会学) 汽车工程 工程类 数学 统计 控制(管理) 人工智能 机器学习
作者
Liang Lu,Fangfang Zheng,Xiaobo Liu
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981231215338
摘要

This paper proposes a stochastic model for mixed traffic consisting of human-driven vehicles (HVs), connected automated vehicles (CAVs), and degraded connected automated vehicles (DCAVs). The model addresses the issue that most of the current literature ignores: the degradation of CAVs, and the heterogeneity and uncertainty of HVs, CAVs, and DCAVs. The source of uncertainty was the heterogeneous behavior of HVs, CAVs, and DCAVs, captured using vehicle-specific car-following relations, that is, parametric uncertainty. The proposed model allowed for the explicit investigation of the uncertainty, efficiency, and stability of mixed traffic under various CAV penetration rates, different positions of CAVs in the traffic stream, and the different degradation levels of CAVs. The numerical experiment results showed that a larger CAV penetration rate helped to reduce uncertainty and improve the efficiency and stability of traffic flow. Furthermore, we investigated the impact of different position combinations of CAVs in the mixed traffic stream on traffic performance under four scenarios: 1) CAVs randomly distributed in the traffic stream, 2) CAVs forming a platoon traveling in the front of the traffic stream, 3) CAVs forming a platoon traveling in the middle of the traffic stream, and 4) CAVs forming a platoon traveling in the rear of the traffic stream. The results demonstrated that Scenario 2 gave the best performance in reducing uncertainty and improving efficiency and stability under different CAV penetration rates, whereas Scenario 4 performed the worst. Moreover, increasing degradation levels of CAVs negatively affected the reduction of uncertainty and improvement of efficiency and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴先森发布了新的文献求助10
1秒前
xqyy发布了新的文献求助10
1秒前
松鼠叶发布了新的文献求助10
2秒前
cctv18应助云上人采纳,获得10
2秒前
kevin完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
黑咖喱完成签到,获得积分10
3秒前
俗人应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
白鲸完成签到,获得积分10
4秒前
5秒前
噗宝凹发布了新的文献求助10
5秒前
8秒前
Ava应助闫闫采纳,获得10
8秒前
白小白完成签到 ,获得积分10
10秒前
小昏完成签到,获得积分10
11秒前
13秒前
llllhh发布了新的文献求助20
13秒前
cctv18应助易达采纳,获得30
14秒前
丘比特应助Great小飞侠采纳,获得10
15秒前
15秒前
白小白关注了科研通微信公众号
15秒前
华仔应助遗忘的寂寞采纳,获得10
15秒前
zf完成签到,获得积分20
16秒前
17秒前
20秒前
20秒前
小园饼干完成签到,获得积分10
22秒前
向峻熙发布了新的文献求助10
22秒前
22秒前
Moomba完成签到 ,获得积分10
23秒前
可爱的函函应助小昏采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244342
求助须知:如何正确求助?哪些是违规求助? 2888037
关于积分的说明 8251070
捐赠科研通 2556507
什么是DOI,文献DOI怎么找? 1384886
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626045