Detection of variety and wax bloom of Shaanxi plum during post-harvest handling

计算机科学 多样性(控制论) 鉴定(生物学) 人工智能 模式识别(心理学) 机器学习 数据挖掘 植物 生物 生物化学
作者
Hanchi Liu,Jinrong He,Xuanping Fan,Bin Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105066-105066
标识
DOI:10.1016/j.chemolab.2024.105066
摘要

The detection of plum variety and wax bloom has extensive applications in the fields of fruit classification and fruit quality assessment. By automating the detection and identification of plum varieties and wax bloom, it is possible to enhance the efficiency and accuracy of variety identification and quality assessment, and reduce manual intervention and misjudgment, thereby improving the market competitiveness of fruits. Currently, many works focus on improving the detection performance of single attribute detection of plum varieties or wax bloom, and it is often necessary to use two models to detect the same plum variety and quality information separately, which leads to inefficient and resource-consuming problems in practical applications. To solve this problem and improve the efficiency of detection, a Multi-Label detection model based on YOLOv7 is proposed. Firstly, the double detection head structure is introduced to improve the prediction ability for two types of attribute features. Then, the loss function suitable for multi-attribute labels is improved, and two classification loss functions are used to optimize the prediction results of the two types of attribute labels, respectively. Finally, a multi-label non-maximum suppression algorithm is proposed to solve the problem of filtering redundant bounding boxes of multi-attribute labels. Experimental results on the plum image dataset show that the proposed Multi-Label YOLOv7 model achieves a [email protected] of 96.2 %, a precision of 94.6 %, and a recall of 89.5 %. The experimental results show that the Multi-Label YOLOv7 model can effectively detect variety and wax bloom attributes and improve the efficiency of multi-attribute label detection. The code and dataset for this experiment can be found at https://github.com/hejinrong/Muti-Label-YOLOv7.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪外绣完成签到,获得积分10
1秒前
拉长的诗蕊完成签到,获得积分10
2秒前
Ice_zhao完成签到,获得积分10
4秒前
MZ完成签到,获得积分0
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
跳跃太清发布了新的文献求助20
11秒前
加油少年完成签到,获得积分10
11秒前
香蕉觅云应助虚幻龙猫采纳,获得10
11秒前
LIKUN完成签到,获得积分10
12秒前
calico完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
怡然含桃完成签到 ,获得积分10
13秒前
ping完成签到,获得积分10
13秒前
虚心的如曼完成签到 ,获得积分10
13秒前
白石溪完成签到,获得积分10
14秒前
Dreammy完成签到,获得积分10
14秒前
neu_zxy1991完成签到,获得积分10
14秒前
HCZN完成签到,获得积分10
15秒前
15秒前
李爱国应助Ds采纳,获得10
17秒前
小曹医生完成签到,获得积分10
18秒前
机智马里奥完成签到 ,获得积分10
18秒前
苗苗043完成签到,获得积分10
19秒前
19秒前
李小二完成签到,获得积分10
20秒前
可靠的千凝完成签到 ,获得积分10
21秒前
万历十五年完成签到,获得积分10
21秒前
清爽朋友完成签到,获得积分10
22秒前
25秒前
March完成签到,获得积分10
27秒前
chenjun7080完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
wkjfh应助子卿采纳,获得10
28秒前
sunsunsun完成签到,获得积分10
28秒前
赘婿应助清爽朋友采纳,获得10
28秒前
zcs完成签到,获得积分10
29秒前
Ds发布了新的文献求助10
32秒前
Hello应助韦老虎采纳,获得10
33秒前
阿卓西完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664802
求助须知:如何正确求助?哪些是违规求助? 4870317
关于积分的说明 15108861
捐赠科研通 4823571
什么是DOI,文献DOI怎么找? 2582414
邀请新用户注册赠送积分活动 1536452
关于科研通互助平台的介绍 1494964