亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of variety and wax bloom of Shaanxi plum during post-harvest handling

计算机科学 多样性(控制论) 鉴定(生物学) 人工智能 模式识别(心理学) 机器学习 数据挖掘 植物 生物 生物化学
作者
Hanchi Liu,Jinrong He,Xuanping Fan,Bin Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105066-105066
标识
DOI:10.1016/j.chemolab.2024.105066
摘要

The detection of plum variety and wax bloom has extensive applications in the fields of fruit classification and fruit quality assessment. By automating the detection and identification of plum varieties and wax bloom, it is possible to enhance the efficiency and accuracy of variety identification and quality assessment, and reduce manual intervention and misjudgment, thereby improving the market competitiveness of fruits. Currently, many works focus on improving the detection performance of single attribute detection of plum varieties or wax bloom, and it is often necessary to use two models to detect the same plum variety and quality information separately, which leads to inefficient and resource-consuming problems in practical applications. To solve this problem and improve the efficiency of detection, a Multi-Label detection model based on YOLOv7 is proposed. Firstly, the double detection head structure is introduced to improve the prediction ability for two types of attribute features. Then, the loss function suitable for multi-attribute labels is improved, and two classification loss functions are used to optimize the prediction results of the two types of attribute labels, respectively. Finally, a multi-label non-maximum suppression algorithm is proposed to solve the problem of filtering redundant bounding boxes of multi-attribute labels. Experimental results on the plum image dataset show that the proposed Multi-Label YOLOv7 model achieves a [email protected] of 96.2 %, a precision of 94.6 %, and a recall of 89.5 %. The experimental results show that the Multi-Label YOLOv7 model can effectively detect variety and wax bloom attributes and improve the efficiency of multi-attribute label detection. The code and dataset for this experiment can be found at https://github.com/hejinrong/Muti-Label-YOLOv7.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mufreh发布了新的文献求助10
2秒前
机灵的静枫完成签到 ,获得积分10
3秒前
morena发布了新的文献求助50
4秒前
炸毛吐司完成签到,获得积分20
8秒前
BowieHuang应助OCDer采纳,获得70
8秒前
9秒前
9秒前
从容芮完成签到,获得积分0
11秒前
与光完成签到 ,获得积分10
11秒前
hey应助炸毛吐司采纳,获得20
14秒前
Clementine发布了新的文献求助10
21秒前
leicaixia完成签到 ,获得积分10
22秒前
24秒前
30秒前
敌敌畏完成签到,获得积分10
38秒前
123完成签到,获得积分10
43秒前
44秒前
46秒前
Criminology34应助123采纳,获得10
47秒前
52秒前
悠悠我心发布了新的文献求助10
52秒前
今后应助活力的三娘采纳,获得10
52秒前
55秒前
留胡子的不弱完成签到 ,获得积分10
56秒前
蛋仔发布了新的文献求助30
58秒前
Adc应助研0种牛马采纳,获得10
59秒前
1分钟前
不秃头发布了新的文献求助10
1分钟前
开朗嘉熙完成签到 ,获得积分10
1分钟前
Otter完成签到,获得积分10
1分钟前
1分钟前
Lea完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
整齐半青完成签到 ,获得积分10
1分钟前
Yaon-Xu完成签到,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
1分钟前
1分钟前
包容的硬币应助cy采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714244
求助须知:如何正确求助?哪些是违规求助? 5222163
关于积分的说明 15273002
捐赠科研通 4865715
什么是DOI,文献DOI怎么找? 2612323
邀请新用户注册赠送积分活动 1562451
关于科研通互助平台的介绍 1519674