Detection of variety and wax bloom of Shaanxi plum during post-harvest handling

计算机科学 多样性(控制论) 鉴定(生物学) 人工智能 模式识别(心理学) 机器学习 数据挖掘 植物 生物 生物化学
作者
Hanchi Liu,Jinrong He,Xuanping Fan,Bin Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105066-105066
标识
DOI:10.1016/j.chemolab.2024.105066
摘要

The detection of plum variety and wax bloom has extensive applications in the fields of fruit classification and fruit quality assessment. By automating the detection and identification of plum varieties and wax bloom, it is possible to enhance the efficiency and accuracy of variety identification and quality assessment, and reduce manual intervention and misjudgment, thereby improving the market competitiveness of fruits. Currently, many works focus on improving the detection performance of single attribute detection of plum varieties or wax bloom, and it is often necessary to use two models to detect the same plum variety and quality information separately, which leads to inefficient and resource-consuming problems in practical applications. To solve this problem and improve the efficiency of detection, a Multi-Label detection model based on YOLOv7 is proposed. Firstly, the double detection head structure is introduced to improve the prediction ability for two types of attribute features. Then, the loss function suitable for multi-attribute labels is improved, and two classification loss functions are used to optimize the prediction results of the two types of attribute labels, respectively. Finally, a multi-label non-maximum suppression algorithm is proposed to solve the problem of filtering redundant bounding boxes of multi-attribute labels. Experimental results on the plum image dataset show that the proposed Multi-Label YOLOv7 model achieves a [email protected] of 96.2 %, a precision of 94.6 %, and a recall of 89.5 %. The experimental results show that the Multi-Label YOLOv7 model can effectively detect variety and wax bloom attributes and improve the efficiency of multi-attribute label detection. The code and dataset for this experiment can be found at https://github.com/hejinrong/Muti-Label-YOLOv7.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨尔莫斯发布了新的文献求助10
刚刚
刘钊扬完成签到,获得积分10
1秒前
halo完成签到,获得积分10
3秒前
demonox发布了新的文献求助10
3秒前
4秒前
5秒前
爽大包完成签到,获得积分20
6秒前
6秒前
7秒前
ChenJohnny应助zzznznnn采纳,获得10
8秒前
小蘑菇应助萨尔莫斯采纳,获得10
8秒前
9秒前
小马甲应助PP采纳,获得10
9秒前
9秒前
燕燕发布了新的文献求助10
9秒前
mariawang发布了新的文献求助10
10秒前
11秒前
思思发布了新的文献求助10
12秒前
sochiyuen完成签到,获得积分10
12秒前
shen发布了新的文献求助10
13秒前
草莓雪酪完成签到 ,获得积分10
13秒前
李雪发布了新的文献求助20
13秒前
Dave发布了新的文献求助10
14秒前
15秒前
缓慢珠发布了新的文献求助10
17秒前
18秒前
在水一方应助燕燕采纳,获得10
18秒前
枪手发布了新的文献求助10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
隐形曼青应助shen采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
糯米鸡完成签到,获得积分20
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963