已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of variety and wax bloom of Shaanxi plum during post-harvest handling

计算机科学 多样性(控制论) 鉴定(生物学) 人工智能 模式识别(心理学) 机器学习 数据挖掘 植物 生物 生物化学
作者
Hanchi Liu,Jinrong He,Xuanping Fan,Bin Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105066-105066
标识
DOI:10.1016/j.chemolab.2024.105066
摘要

The detection of plum variety and wax bloom has extensive applications in the fields of fruit classification and fruit quality assessment. By automating the detection and identification of plum varieties and wax bloom, it is possible to enhance the efficiency and accuracy of variety identification and quality assessment, and reduce manual intervention and misjudgment, thereby improving the market competitiveness of fruits. Currently, many works focus on improving the detection performance of single attribute detection of plum varieties or wax bloom, and it is often necessary to use two models to detect the same plum variety and quality information separately, which leads to inefficient and resource-consuming problems in practical applications. To solve this problem and improve the efficiency of detection, a Multi-Label detection model based on YOLOv7 is proposed. Firstly, the double detection head structure is introduced to improve the prediction ability for two types of attribute features. Then, the loss function suitable for multi-attribute labels is improved, and two classification loss functions are used to optimize the prediction results of the two types of attribute labels, respectively. Finally, a multi-label non-maximum suppression algorithm is proposed to solve the problem of filtering redundant bounding boxes of multi-attribute labels. Experimental results on the plum image dataset show that the proposed Multi-Label YOLOv7 model achieves a [email protected] of 96.2 %, a precision of 94.6 %, and a recall of 89.5 %. The experimental results show that the Multi-Label YOLOv7 model can effectively detect variety and wax bloom attributes and improve the efficiency of multi-attribute label detection. The code and dataset for this experiment can be found at https://github.com/hejinrong/Muti-Label-YOLOv7.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh完成签到,获得积分10
刚刚
2秒前
2秒前
hh完成签到 ,获得积分10
3秒前
gooooood完成签到 ,获得积分10
3秒前
4秒前
陌陌完成签到,获得积分10
6秒前
赵凌发布了新的文献求助10
9秒前
马华化完成签到,获得积分0
10秒前
缓慢的秋莲完成签到,获得积分10
11秒前
海棠完成签到 ,获得积分10
12秒前
dddd完成签到,获得积分10
13秒前
14秒前
小杭76应助yang采纳,获得10
15秒前
16秒前
orixero应助虚心的靖仇采纳,获得10
16秒前
gapper发布了新的文献求助10
17秒前
陳LF发布了新的文献求助10
20秒前
Ava应助song采纳,获得10
20秒前
史远哲发布了新的文献求助10
21秒前
22秒前
言余完成签到,获得积分10
22秒前
23秒前
23秒前
meimei完成签到 ,获得积分10
23秒前
合适尔蝶发布了新的文献求助10
25秒前
jjy发布了新的文献求助10
26秒前
言余发布了新的文献求助1000
26秒前
Zzzzsan发布了新的文献求助10
27秒前
29秒前
29秒前
科研通AI6应助南风上北山采纳,获得10
33秒前
陳LF完成签到,获得积分10
33秒前
doctor杨发布了新的文献求助10
34秒前
觉皇完成签到,获得积分10
34秒前
科研通AI6应助研友_Z3NGvn采纳,获得10
35秒前
可别熬夜了Ar完成签到,获得积分10
36秒前
wanci应助moyu123采纳,获得10
37秒前
Zzzzsan完成签到 ,获得积分10
39秒前
英俊青旋完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355925
求助须知:如何正确求助?哪些是违规求助? 4487754
关于积分的说明 13971004
捐赠科研通 4388533
什么是DOI,文献DOI怎么找? 2411135
邀请新用户注册赠送积分活动 1403662
关于科研通互助平台的介绍 1377297