Detection of variety and wax bloom of Shaanxi plum during post-harvest handling

计算机科学 多样性(控制论) 鉴定(生物学) 人工智能 模式识别(心理学) 机器学习 数据挖掘 植物 生物 生物化学
作者
Hanchi Liu,Jinrong He,Xuanping Fan,Bin Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105066-105066
标识
DOI:10.1016/j.chemolab.2024.105066
摘要

The detection of plum variety and wax bloom has extensive applications in the fields of fruit classification and fruit quality assessment. By automating the detection and identification of plum varieties and wax bloom, it is possible to enhance the efficiency and accuracy of variety identification and quality assessment, and reduce manual intervention and misjudgment, thereby improving the market competitiveness of fruits. Currently, many works focus on improving the detection performance of single attribute detection of plum varieties or wax bloom, and it is often necessary to use two models to detect the same plum variety and quality information separately, which leads to inefficient and resource-consuming problems in practical applications. To solve this problem and improve the efficiency of detection, a Multi-Label detection model based on YOLOv7 is proposed. Firstly, the double detection head structure is introduced to improve the prediction ability for two types of attribute features. Then, the loss function suitable for multi-attribute labels is improved, and two classification loss functions are used to optimize the prediction results of the two types of attribute labels, respectively. Finally, a multi-label non-maximum suppression algorithm is proposed to solve the problem of filtering redundant bounding boxes of multi-attribute labels. Experimental results on the plum image dataset show that the proposed Multi-Label YOLOv7 model achieves a [email protected] of 96.2 %, a precision of 94.6 %, and a recall of 89.5 %. The experimental results show that the Multi-Label YOLOv7 model can effectively detect variety and wax bloom attributes and improve the efficiency of multi-attribute label detection. The code and dataset for this experiment can be found at https://github.com/hejinrong/Muti-Label-YOLOv7.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
酷波er应助熊啊采纳,获得10
3秒前
cc完成签到,获得积分10
9秒前
青塘龙仔发布了新的文献求助10
9秒前
Lucas应助青果采纳,获得10
10秒前
务实玫瑰完成签到,获得积分10
12秒前
谢謝发布了新的文献求助10
14秒前
jiangjiang完成签到 ,获得积分10
15秒前
16秒前
lcx完成签到,获得积分10
16秒前
17秒前
上官若男应助嘟嘟豆806采纳,获得30
19秒前
烧麦专家发布了新的文献求助10
20秒前
lmm完成签到,获得积分10
21秒前
青果发布了新的文献求助10
22秒前
purple完成签到,获得积分10
26秒前
震动的白山完成签到 ,获得积分10
27秒前
28秒前
熊啊发布了新的文献求助10
32秒前
34秒前
星星会开花完成签到,获得积分10
34秒前
宁宁完成签到 ,获得积分10
35秒前
CCC完成签到,获得积分10
35秒前
流流124141完成签到,获得积分10
35秒前
爆米花应助熊啊采纳,获得10
36秒前
科研通AI5应助归雁采纳,获得30
36秒前
zho发布了新的文献求助10
37秒前
Lq发布了新的文献求助10
38秒前
38秒前
39秒前
小圆圈发布了新的文献求助10
43秒前
科研通AI2S应助lemon采纳,获得10
44秒前
北地风情完成签到 ,获得积分10
44秒前
黑糖珍珠完成签到 ,获得积分10
44秒前
46秒前
科研通AI5应助幸福幻灵采纳,获得10
49秒前
dingz完成签到,获得积分10
49秒前
学术小王子完成签到,获得积分10
51秒前
房房不慌完成签到 ,获得积分10
51秒前
窦逗豆完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761824
求助须知:如何正确求助?哪些是违规求助? 3305615
关于积分的说明 10134845
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658255
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751