Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: Using lesions and their extended regions

无线电技术 医学 放射科 核医学 人工智能 计算机科学
作者
Shuping Wang,Xuehu Wang,Xiaoping Yin,Xiaoyan Lv,Jianming Cai
出处
期刊:Physica Medica [Elsevier BV]
卷期号:120: 103322-103322 被引量:4
标识
DOI:10.1016/j.ejmp.2024.103322
摘要

Purpose This study aimed to evaluate the ability of MRI-based intratumoral and peritumoral radiomics features of liver tumors to differentiate between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) and to predict ICC differentiation. Methods This study retrospectively collected 87 HCC patients and 75 ICC patients who were confirmed pathologically. The standard region of interest (ROI) of the lesion drawn by the radiologist manually shrank inward and expanded outward to form multiple ROI extended regions. A three-step feature selection method was used to select important radiomics features and convolution features from extended regions. The predictive performance of several machine learning classifiers on dominant feature sets was compared. The extended region performance was assessed by area under the curve (AUC), specificity, sensitivity, F1-score and accuracy. Results The performance of the model is further improved by incorporating convolution features. Compared with the standard ROI, the extended region obtained better prediction performance, among which 6 mm extended region had the best prediction ability (Classification: AUC = 0.96, F1-score = 0.94, Accuracy: 0.94; Grading: AUC = 0.94, F1-score = 0.93, Accuracy = 0.89). Conclusion Larger extended region and fusion features can improve tumor predictive performance and have potential value in tumor radiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诚心谷南发布了新的文献求助10
刚刚
1秒前
禾禾发布了新的文献求助30
1秒前
cdsd完成签到,获得积分10
1秒前
搜集达人应助zhang采纳,获得10
2秒前
科研通AI5应助与落采纳,获得10
2秒前
fjh完成签到,获得积分10
3秒前
3秒前
珊瑚海123完成签到,获得积分10
4秒前
4秒前
4秒前
Lachs完成签到 ,获得积分10
4秒前
zzz完成签到,获得积分10
5秒前
游海艳发布了新的文献求助10
6秒前
xiaozhao完成签到,获得积分10
6秒前
顾矜应助木小小采纳,获得10
7秒前
ezreal完成签到,获得积分10
7秒前
7秒前
8秒前
研友_nxeAlZ发布了新的文献求助10
10秒前
zhang完成签到,获得积分10
11秒前
11秒前
糊涂生活糊涂过完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
wzppp发布了新的文献求助10
14秒前
pluto应助十里长亭采纳,获得10
15秒前
16秒前
陈文文发布了新的文献求助10
17秒前
简单的银耳汤完成签到,获得积分10
17秒前
刻苦耐劳发布了新的文献求助10
17秒前
17秒前
香蕉觅云应助米虫采纳,获得10
18秒前
曹子轩发布了新的文献求助10
18秒前
研友_nxeAlZ完成签到,获得积分10
19秒前
P2JY完成签到,获得积分10
19秒前
nz完成签到,获得积分10
20秒前
木小小发布了新的文献求助10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280826
关于积分的说明 10021216
捐赠科研通 2997475
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749705