清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Life-Long Learning XAI Metaheuristic-Based Type-2 Fuzzy System for Solar Radiation Modeling

元启发式 计算机科学 模糊逻辑 数学优化 数学 人工智能
作者
Majid Almaraashi,Mahmoud Abdulrahim,Hani Hagras
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (4): 2102-2115 被引量:4
标识
DOI:10.1109/tfuzz.2023.3343955
摘要

Solar photovoltaic (PV) power generation is one of the most important sources for renewable energy.However, PV power generation is entirely dependent on the amount of downward solar radiation reaching the solar cells.This is determined by uncertain and uncontrollable meteorological factors such as temperature, humidity, wind speed, and direction, as well as other factors such as topographical characteristics.Good solar radiation prediction models can increase energy output while decreasing the operation costs of photovoltaic power generation.For example, in some provinces in China, PV stations are required to upload short-term online power forecast information to power dispatching agencies.Numerous AI, statistical, and numerical weather prediction models have been used in many real-world renewable energy applications, with a focus on modeling accuracy.However, there is a need for Explainable AI (XAI) models that could be easily understood, analyzed, and augmented by the stakeholders.In this paper, we present a compact, explainable, and lifelong learning metaheuristic-based Interval Type-2 Fuzzy Logic System (IT2FLS) for Solar Radiation Modeling.The generated model will be composed of a small number of short IF-Then rules that have been optimized via simulated annealing to produce models with high prediction accuracy.These models are updated through a life-long learning approach to maximize their accuracy and maintain interpretability.In the process of lifelong learning, the proposed method transferred the model's knowledge to new geographical locations with minimal forgetting.The proposed method achieved good prediction accuracy and outperformed on new geographical locations other transparent and black-box models by 13.2% as well as maintaining excellent generalization ability.The resulting models have been evaluated and accepted by experts, and thanks to the generated transparency, the experts were able to augment the models with their expertise, which increased the models' accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
梦里贪乐发布了新的文献求助10
7秒前
zyp应助科研通管家采纳,获得20
16秒前
青出于蓝蔡完成签到,获得积分10
20秒前
xandyzoe完成签到,获得积分10
36秒前
Lucas应助Omni采纳,获得10
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Yesaniar发布了新的文献求助10
1分钟前
Haho发布了新的文献求助10
1分钟前
1分钟前
Wei发布了新的文献求助10
2分钟前
2分钟前
Omni发布了新的文献求助10
2分钟前
牛安荷完成签到 ,获得积分10
2分钟前
dm完成签到 ,获得积分10
2分钟前
2分钟前
lyao发布了新的文献求助10
2分钟前
连安阳完成签到,获得积分10
3分钟前
lyao完成签到,获得积分10
3分钟前
3分钟前
AEL发布了新的文献求助10
3分钟前
3分钟前
3分钟前
三人行发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
AEL完成签到 ,获得积分10
4分钟前
moodlunatic完成签到,获得积分20
4分钟前
炙热的雨双完成签到 ,获得积分10
5分钟前
5分钟前
所所应助LilNASA采纳,获得10
6分钟前
Lucas应助xingyan采纳,获得10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
zhul09完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
xingyan发布了新的文献求助10
7分钟前
SciGPT应助颜林林采纳,获得10
7分钟前
搜集达人应助xingyan采纳,获得10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098637
关于积分的说明 9240225
捐赠科研通 2793747
什么是DOI,文献DOI怎么找? 1533239
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707387