EATDer: Edge-Assisted Adaptive Transformer Detector for Remote Sensing Change Detection

计算机科学 遥感 变更检测 探测器 计算机视觉 边缘检测 地质学 图像处理 电信 图像(数学)
作者
Jingjing Ma,Junyi Duan,Xu Tang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3344083
摘要

Change detection (CD) is one of the important research topics in remote sensing (RS) image processing. Recently, convolutional neural networks (CNNs) have dominated the RSCD community. Many successful CNN-based models have been proposed, and they achieved cracking performance. Nevertheless, influenced by the limited receptive field, the CNN-based models are not good at capturing long-distance context dependencies within RS images, negatively impacting their performance. With the appearance of the visual transformer, the above problems have been mitigated. However, the high time costs of the transformer-based models limit their applicability. In addition, previous CD networks (whether CNN-based or transform-based) do not pay attention to the edges of changed areas, reducing the quality of change maps. To overcome the shortcomings discussed above, we propose a new CD method named edge-assisted adaptive transformer detector (EATDer). EATDer consists of a Siamese encoder and an edge-aware decoder. Each branch in the Siamese encoder encloses three self-adaption vision transformer (SAVT) blocks, which aim to capture the local and global information within RS images. Also, two branches are connected by full-range fusion modules (FRFMs), which focus on mining the temporal clues among bi-temporal RS images and pointing out the changed/unchanged messages. The edge-aware decoder first integrates the multiscale features obtained by the encoder using a restoring block. Then, it enhances the combined features by a refining block. Finally, based on the refined features, both the change and edge detection results can be produced. Along with a joint loss function, we can get high-quality change maps in which the changed areas are correct and have clear and smooth edges. The usefulness of our EATDer is validated by extensive experiments conducted on three popular RSCD datasets. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Image-Change-Detection/tree/main/EATDer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyto完成签到,获得积分10
刚刚
刚刚
科研小能手完成签到,获得积分10
1秒前
lanzai发布了新的文献求助20
2秒前
drtianyunhong完成签到,获得积分10
3秒前
念念发布了新的文献求助10
3秒前
月亮发布了新的文献求助10
4秒前
Monica完成签到,获得积分10
5秒前
猴子酱酱发布了新的文献求助10
5秒前
我是老大应助慕冰蝶采纳,获得10
6秒前
Betty完成签到 ,获得积分10
8秒前
8秒前
tY完成签到,获得积分10
10秒前
blue发布了新的文献求助10
11秒前
wangy完成签到 ,获得积分10
12秒前
852应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得20
14秒前
思源应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
小尹同学应助科研通管家采纳,获得30
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
陈补天完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
贰鸟应助阿a采纳,获得20
17秒前
qwt应助ZHANES采纳,获得10
18秒前
隐形曼青应助新一袁采纳,获得10
21秒前
21秒前
22秒前
华仔应助四海采纳,获得10
23秒前
Mascappa1989完成签到,获得积分10
23秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765