EATDer: Edge-Assisted Adaptive Transformer Detector for Remote Sensing Change Detection

计算机科学 人工智能 编码器 卷积神经网络 变压器 探测器 计算机视觉 目标检测 模式识别(心理学) 电信 电压 物理 量子力学 操作系统
作者
Jingjing Ma,Junyi Duan,Xu Tang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:57
标识
DOI:10.1109/tgrs.2023.3344083
摘要

Change detection (CD) is one of the important research topics in remote sensing (RS) image processing. Recently, convolutional neural networks (CNNs) have dominated the RSCD community. Many successful CNN-based models have been proposed, and they achieved cracking performance. Nevertheless, influenced by the limited receptive field, the CNN-based models are not good at capturing long-distance context dependencies within RS images, negatively impacting their performance. With the appearance of the visual transformer, the above problems have been mitigated. However, the high time costs of the transformer-based models limit their applicability. In addition, previous CD networks (whether CNN-based or transform-based) do not pay attention to the edges of changed areas, reducing the quality of change maps. To overcome the shortcomings discussed above, we propose a new CD method named edge-assisted adaptive transformer detector (EATDer). EATDer consists of a Siamese encoder and an edge-aware decoder. Each branch in the Siamese encoder encloses three self-adaption vision transformer (SAVT) blocks, which aim to capture the local and global information within RS images. Also, two branches are connected by full-range fusion modules (FRFMs), which focus on mining the temporal clues among bi-temporal RS images and pointing out the changed/unchanged messages. The edge-aware decoder first integrates the multiscale features obtained by the encoder using a restoring block. Then, it enhances the combined features by a refining block. Finally, based on the refined features, both the change and edge detection results can be produced. Along with a joint loss function, we can get high-quality change maps in which the changed areas are correct and have clear and smooth edges. The usefulness of our EATDer is validated by extensive experiments conducted on three popular RSCD datasets. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Image-Change-Detection/tree/main/EATDer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
超级安荷完成签到 ,获得积分10
4秒前
YuLu发布了新的文献求助10
5秒前
1234发布了新的文献求助10
5秒前
5秒前
dawnfrf应助玛卡巴卡采纳,获得30
6秒前
怜然发布了新的文献求助10
6秒前
黄黄黄完成签到 ,获得积分10
6秒前
wuyu发布了新的文献求助10
6秒前
杨仔发布了新的文献求助10
7秒前
科研通AI6应助然然采纳,获得10
8秒前
尼古拉斯发布了新的文献求助10
8秒前
wssamuel完成签到 ,获得积分0
8秒前
科研通AI6应助动听衬衫采纳,获得10
8秒前
瘾迷者完成签到,获得积分20
8秒前
研友_ZGAeoL完成签到,获得积分10
9秒前
米粒完成签到,获得积分10
10秒前
11秒前
11秒前
Redback应助啦啦啦采纳,获得10
13秒前
有趣的银发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
fwj完成签到,获得积分10
18秒前
Cyuan发布了新的文献求助10
18秒前
Orange应助1234采纳,获得10
19秒前
惊涛骇浪完成签到 ,获得积分10
19秒前
星星发布了新的文献求助10
20秒前
20秒前
fwj发布了新的文献求助10
21秒前
21秒前
22秒前
清欢完成签到,获得积分10
24秒前
烟花应助学渣采纳,获得10
24秒前
科研通AI2S应助北极星采纳,获得10
24秒前
竹筏过海应助科研通管家采纳,获得30
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
ahtj应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714