Prediction and evaluation of a nomogram model for recurrent acute pancreatitis

列线图 医学 急性胰腺炎 胰腺炎 重症监护医学 胰腺疾病 普通外科 内科学 胰腺
作者
Yuan Chen,Shu Huang,Bei Luo,Jiao Jiang,Wensen Ren,Kang Zou,Xiaolin Zhang,Muhan Lü,Xiaowei Tang
出处
期刊:European Journal of Gastroenterology & Hepatology [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (5): 554-562
标识
DOI:10.1097/meg.0000000000002732
摘要

Objective The purpose of this study was to investigate the influencing factors for recurrent acute pancreatitis and construct the nomogram model to predict the risk of recurrent acute pancreatitis. Methods Patients diagnosed with acute pancreatitis in the Affiliated Hospital of Southwest Medical University were enrolled. We collected these patients’ basic information, laboratory data, imaging information. Using Logistic regression and least absolute shrinkage and selection operator regression to select risk factor for Cross-Validation Criterion. To create nomogram and validated by receiver operator characteristic curve, calibration curves and decision curve analysis. Results A total of 533 patients with acute pancreatitis were included, including 99 recurrent acute pancreatitis patients. The average age of recurrent acute pancreatitis patients was 49.69 years old, and 67.7% of them were male. At the same time, in all recurrent acute pancreatitis patients, hypertriglyceridemic pancreatitis is the most important reason (54.5%). Regression analysis and least absolute shrinkage and selection operator regression showed that smoking history, acute necrotic collection, triglyceride, and alcohol etiology for acute pancreatitis were identified and entered into the nomogram. The area under the receiver operator characteristic curve of the training set was 0.747. The calibration curve showed the consistency between the nomogram model and the actual probability. Conclusion In conclusion, some high-risk factors like smoking history, acute necrotic collection, triglyceride, and alcohol etiology for acute pancreatitis may predict recurrent pancreatitis and their incorporation into a nomogram has high accuracy in predicting recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wzx199711发布了新的文献求助10
1秒前
bkagyin应助112采纳,获得10
1秒前
木云浅夏完成签到,获得积分10
1秒前
5秒前
科目三应助刘倩倩采纳,获得10
5秒前
6秒前
正常发布了新的文献求助10
6秒前
赘婿应助Fjj采纳,获得10
7秒前
xx发布了新的文献求助10
7秒前
xiaodaiduyan发布了新的文献求助10
7秒前
7秒前
112完成签到,获得积分20
9秒前
10秒前
10秒前
桐桐应助迷路桃子采纳,获得10
10秒前
11秒前
研友_Z6k5Q8发布了新的文献求助10
11秒前
PsyAerill完成签到,获得积分10
12秒前
Lucas应助lalalala采纳,获得10
12秒前
wanidamm完成签到,获得积分10
14秒前
科研通AI2S应助Able阿拉基采纳,获得10
14秒前
Phoebe1996完成签到 ,获得积分10
14秒前
酷波er应助花蕊采纳,获得10
15秒前
yo1nang发布了新的文献求助10
15秒前
不配.应助活力数据线采纳,获得20
15秒前
不配.应助活力数据线采纳,获得20
15秒前
小红花完成签到,获得积分10
16秒前
乐乐应助fan采纳,获得10
17秒前
18秒前
20秒前
20秒前
21秒前
可爱的函函应助雪山飞龙采纳,获得10
21秒前
21秒前
聪明的灵寒完成签到 ,获得积分10
22秒前
田様应助杰哥采纳,获得10
22秒前
23秒前
Buendia发布了新的文献求助10
23秒前
脑洞疼应助发10篇SCI采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464