清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Network for Image Compressed Sensing Coding Using Local Structural Sampling

计算机科学 人工智能 压缩传感 编解码器 采样(信号处理) 迭代重建 算法 编码(社会科学) 计算机视觉 数学 计算机硬件 统计 滤波器(信号处理)
作者
Wenxue Cui,Xingtao Wang,Xiaopeng Fan,Shaohui Liu,Xinwei Gao,Debin Zhao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-22 被引量:1
标识
DOI:10.1145/3649441
摘要

Existing image compressed sensing (CS) coding frameworks usually solve an inverse problem based on measurement coding and optimization-based image reconstruction, which still exist the following two challenges: (1) the widely used random sampling matrix, such as the Gaussian Random Matrix (GRM), usually leads to low measurement coding efficiency, and (2) the optimization-based reconstruction methods generally maintain a much higher computational complexity. In this article, we propose a new convolutional neural network based image CS coding framework using local structural sampling (dubbed CSCNet) that includes three functional modules: local structural sampling, measurement coding, and Laplacian pyramid reconstruction. In the proposed framework, instead of GRM, a new local structural sampling matrix is first developed, which is able to enhance the correlation between the measurements through a local perceptual sampling strategy. Besides, the designed local structural sampling matrix can be jointly optimized with the other functional modules during the training process. After sampling, the measurements with high correlations are produced, which are then coded into final bitstreams by the third-party image codec. Last, a Laplacian pyramid reconstruction network is proposed to efficiently recover the target image from the measurement domain to the image domain. Extensive experimental results demonstrate that the proposed scheme outperforms the existing state-of-the-art CS coding methods while maintaining fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
量子星尘发布了新的文献求助150
9秒前
伍柒叁发布了新的文献求助10
12秒前
binfo完成签到,获得积分10
14秒前
伍柒叁完成签到,获得积分10
19秒前
加贝完成签到 ,获得积分10
36秒前
bkagyin应助MY采纳,获得10
52秒前
1分钟前
MY发布了新的文献求助10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
Able完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助10
2分钟前
彩色亿先完成签到 ,获得积分10
3分钟前
冰封火种发布了新的文献求助10
3分钟前
Hello应助Lss采纳,获得10
3分钟前
fufufu123完成签到 ,获得积分10
4分钟前
4分钟前
李志全完成签到 ,获得积分10
4分钟前
NexusExplorer应助紫熊采纳,获得10
5分钟前
Zoom应助xun采纳,获得10
5分钟前
Kai完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助100
5分钟前
xun完成签到,获得积分20
5分钟前
雅诺德琳发布了新的文献求助30
6分钟前
123123完成签到 ,获得积分10
7分钟前
7分钟前
堪捕发布了新的文献求助30
7分钟前
紫熊完成签到,获得积分10
8分钟前
萝卜猪发布了新的文献求助10
8分钟前
呆萌冰彤完成签到 ,获得积分10
8分钟前
9分钟前
GingerF应助科研通管家采纳,获得50
9分钟前
桐桐应助科研通管家采纳,获得10
9分钟前
GingerF应助科研通管家采纳,获得150
9分钟前
SCH_zhu完成签到,获得积分10
10分钟前
00完成签到 ,获得积分10
10分钟前
aowulan完成签到 ,获得积分10
10分钟前
冉亦完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901166
求助须知:如何正确求助?哪些是违规求助? 4180698
关于积分的说明 12977201
捐赠科研通 3945594
什么是DOI,文献DOI怎么找? 2164200
邀请新用户注册赠送积分活动 1182511
关于科研通互助平台的介绍 1088853