Deep Network for Image Compressed Sensing Coding Using Local Structural Sampling

计算机科学 人工智能 压缩传感 编解码器 采样(信号处理) 迭代重建 算法 编码(社会科学) 计算机视觉 数学 统计 滤波器(信号处理) 计算机硬件
作者
Wenxue Cui,Xingtao Wang,Xiaopeng Fan,Shaohui Liu,Xinwei Gao,Debin Zhao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-22 被引量:1
标识
DOI:10.1145/3649441
摘要

Existing image compressed sensing (CS) coding frameworks usually solve an inverse problem based on measurement coding and optimization-based image reconstruction, which still exist the following two challenges: (1) the widely used random sampling matrix, such as the Gaussian Random Matrix (GRM), usually leads to low measurement coding efficiency, and (2) the optimization-based reconstruction methods generally maintain a much higher computational complexity. In this article, we propose a new convolutional neural network based image CS coding framework using local structural sampling (dubbed CSCNet) that includes three functional modules: local structural sampling, measurement coding, and Laplacian pyramid reconstruction. In the proposed framework, instead of GRM, a new local structural sampling matrix is first developed, which is able to enhance the correlation between the measurements through a local perceptual sampling strategy. Besides, the designed local structural sampling matrix can be jointly optimized with the other functional modules during the training process. After sampling, the measurements with high correlations are produced, which are then coded into final bitstreams by the third-party image codec. Last, a Laplacian pyramid reconstruction network is proposed to efficiently recover the target image from the measurement domain to the image domain. Extensive experimental results demonstrate that the proposed scheme outperforms the existing state-of-the-art CS coding methods while maintaining fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
太阳alright完成签到,获得积分10
2秒前
我不爱池鱼应助WANG采纳,获得10
3秒前
顽主发布了新的文献求助10
3秒前
manman发布了新的文献求助10
3秒前
烨伟发布了新的文献求助10
4秒前
Tiger-Cheng发布了新的文献求助10
4秒前
4秒前
123应助我是站长才怪采纳,获得20
4秒前
真实的青曼完成签到,获得积分10
4秒前
5秒前
6秒前
凳子3333完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
氼乚发布了新的文献求助10
9秒前
麻瓜小禾子完成签到,获得积分10
9秒前
March完成签到,获得积分10
9秒前
善学以致用应助28551采纳,获得10
10秒前
称心怀蕾发布了新的文献求助10
10秒前
畅快怀寒完成签到,获得积分10
10秒前
敖江风云完成签到,获得积分10
10秒前
10秒前
hy发布了新的文献求助10
10秒前
11秒前
乐乐酱应助muqianyaowanan采纳,获得10
11秒前
wanci应助rx采纳,获得10
11秒前
11秒前
12秒前
12秒前
张元元发布了新的文献求助10
12秒前
九千七发布了新的文献求助10
12秒前
乐乐应助苹果白凡采纳,获得10
13秒前
年啦啦啦发布了新的文献求助10
13秒前
李爱国应助唐人雄采纳,获得10
14秒前
烟花应助火星上映天采纳,获得10
14秒前
Joyce发布了新的文献求助10
15秒前
大个应助lixl0725采纳,获得10
15秒前
裳水发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305803
求助须知:如何正确求助?哪些是违规求助? 2939514
关于积分的说明 8493767
捐赠科研通 2613930
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663185
邀请新用户注册赠送积分活动 647987