Deep Network for Image Compressed Sensing Coding Using Local Structural Sampling

计算机科学 人工智能 压缩传感 编解码器 采样(信号处理) 迭代重建 算法 编码(社会科学) 计算机视觉 数学 计算机硬件 统计 滤波器(信号处理)
作者
Wenxue Cui,Xingtao Wang,Xiaopeng Fan,Shaohui Liu,Xinwei Gao,Debin Zhao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-22 被引量:1
标识
DOI:10.1145/3649441
摘要

Existing image compressed sensing (CS) coding frameworks usually solve an inverse problem based on measurement coding and optimization-based image reconstruction, which still exist the following two challenges: (1) the widely used random sampling matrix, such as the Gaussian Random Matrix (GRM), usually leads to low measurement coding efficiency, and (2) the optimization-based reconstruction methods generally maintain a much higher computational complexity. In this article, we propose a new convolutional neural network based image CS coding framework using local structural sampling (dubbed CSCNet) that includes three functional modules: local structural sampling, measurement coding, and Laplacian pyramid reconstruction. In the proposed framework, instead of GRM, a new local structural sampling matrix is first developed, which is able to enhance the correlation between the measurements through a local perceptual sampling strategy. Besides, the designed local structural sampling matrix can be jointly optimized with the other functional modules during the training process. After sampling, the measurements with high correlations are produced, which are then coded into final bitstreams by the third-party image codec. Last, a Laplacian pyramid reconstruction network is proposed to efficiently recover the target image from the measurement domain to the image domain. Extensive experimental results demonstrate that the proposed scheme outperforms the existing state-of-the-art CS coding methods while maintaining fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿巴阿哲完成签到,获得积分10
刚刚
斯文败类应助Tiffany采纳,获得10
刚刚
两栖玩家完成签到 ,获得积分10
刚刚
任性白卉完成签到 ,获得积分10
1秒前
张丫丫发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
1秒前
CipherSage应助鑫鑫采纳,获得10
1秒前
文艺的曼柔完成签到 ,获得积分10
1秒前
1秒前
传奇3应助Mansis采纳,获得10
1秒前
东木应助风清扬采纳,获得100
2秒前
快乐的海亦完成签到,获得积分20
3秒前
南宫清涟完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
灰灰完成签到 ,获得积分10
5秒前
maomao完成签到,获得积分10
5秒前
5秒前
楚舜华完成签到,获得积分10
5秒前
6秒前
111发布了新的文献求助10
6秒前
6秒前
Jess完成签到,获得积分10
7秒前
木心应助南宫清涟采纳,获得20
7秒前
橙色小瓶子完成签到,获得积分10
7秒前
7秒前
Michael_li完成签到,获得积分10
7秒前
领导范儿应助A2150530290采纳,获得10
7秒前
跳跃毒娘发布了新的文献求助10
7秒前
深情安青应助yn采纳,获得10
8秒前
8秒前
8秒前
六便士在攒完成签到,获得积分10
8秒前
黑加仑发布了新的文献求助10
8秒前
SciGPT应助hanzhou1314采纳,获得30
9秒前
gxmu6322发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582