亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer

胰腺癌 医学 胰腺 体积热力学 放射科 分割 图像分割 基本事实 癌症 内科学 核医学 人工智能 计算机科学 量子力学 物理
作者
Ehwa Yang,Jae‐Hun Kim,Ji Hye Min,Woo Kyoung Jeong,Jeong Ah Hwang,Jeong Hyun Lee,Jaeseung Shin,Honsoul Kim,Seol Eui Lee,Sun‐Young Baek
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2784-2794 被引量:3
标识
DOI:10.1016/j.acra.2024.01.004
摘要

Rationale and Objectives To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. Materials and Methods This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. Results The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. Conclusion The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer. To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
hongxuezhi完成签到,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
在水一方应助zzz采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助任我行采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
blenx发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Huong完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
任我行发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
平常易烟完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI5应助blenx采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503