nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer

胰腺癌 医学 胰腺 体积热力学 放射科 分割 图像分割 基本事实 癌症 内科学 核医学 人工智能 计算机科学 物理 量子力学
作者
Ehwa Yang,Jae‐Hun Kim,Ji Hye Min,Woo Kyoung Jeong,Jeong Ah Hwang,Jeong Hyun Lee,Jaeseung Shin,Honsoul Kim,Seol Eui Lee,Sun‐Young Baek
出处
期刊:Academic Radiology [Elsevier]
被引量:2
标识
DOI:10.1016/j.acra.2024.01.004
摘要

Rationale and Objectives To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. Materials and Methods This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. Results The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. Conclusion The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer. To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
slx0410完成签到,获得积分10
刚刚
shuaige完成签到,获得积分10
1秒前
Lucas应助憨人采纳,获得10
1秒前
稀松发布了新的文献求助10
2秒前
CZLhaust完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
piaoyingzhiyu关注了科研通微信公众号
4秒前
谦让友绿发布了新的文献求助10
4秒前
小卢同学发布了新的文献求助10
4秒前
黄友群完成签到 ,获得积分10
4秒前
5秒前
ding应助luoyn采纳,获得10
5秒前
烟花应助着急的向雁采纳,获得10
6秒前
味子橘发布了新的文献求助10
6秒前
YiWei发布了新的文献求助10
6秒前
6秒前
研友_08ojOZ发布了新的文献求助10
7秒前
yu发布了新的文献求助10
8秒前
还单身的忆山完成签到,获得积分10
9秒前
Orange应助成1采纳,获得10
11秒前
11秒前
ppsweek发布了新的文献求助20
11秒前
14秒前
shuaige发布了新的文献求助10
15秒前
SciGPT应助李哈哈采纳,获得10
15秒前
16秒前
18秒前
19秒前
研友_08ojOZ完成签到,获得积分10
19秒前
moufei应助di采纳,获得30
21秒前
21秒前
21秒前
ningmengcao发布了新的文献求助10
22秒前
CipherSage应助peace采纳,获得10
22秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916