nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer

胰腺癌 医学 胰腺 体积热力学 放射科 分割 图像分割 基本事实 癌症 内科学 核医学 人工智能 计算机科学 量子力学 物理
作者
Ehwa Yang,Jae‐Hun Kim,Ji Hye Min,Woo Kyoung Jeong,Jeong Ah Hwang,Jeong Hyun Lee,Jaeseung Shin,Honsoul Kim,Seol Eui Lee,Sun‐Young Baek
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2784-2794 被引量:5
标识
DOI:10.1016/j.acra.2024.01.004
摘要

Rationale and Objectives To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. Materials and Methods This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. Results The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. Conclusion The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer. To develop and validate a deep learning (DL)-based method for pancreas segmentation on CT and automatic measurement of pancreatic volume in pancreatic cancer. This retrospective study used 3D nnU-net architecture for fully automated pancreatic segmentation in patients with pancreatic cancer. The study used 851 portal venous phase CT images (499 pancreatic cancer and 352 normal pancreas). This dataset was divided into training (n = 506), internal validation (n = 126), and external test set (n = 219). For the external test set, the pancreas was manually segmented by two abdominal radiologists (R1 and R2) to obtain the ground truth. In addition, the consensus segmentation was obtained using Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. Segmentation performance was assessed using the Dice similarity coefficient (DSC). Next, the pancreatic volumes determined by automatic segmentation were compared to those determined by manual segmentation by two radiologists. The DL-based model for pancreatic segmentation showed a mean DSC of 0.764 in the internal validation dataset and DSC of 0.807, 0.805, and 0.803 using R1, R2, and STAPLE as references in the external test dataset. The pancreas parenchymal volume measured by automatic and manual segmentations were similar (DL-based model: 65.5 ± 19.3 cm3 and STAPLE: 65.1 ± 21.4 cm3; p = 0.486). The pancreatic parenchymal volume difference between the DL-based model predictions and the manual segmentation by STAPLE was 0.5 cm3, with correlation coefficients of 0.88. The DL-based model efficiently generates automatic segmentation of the pancreas and measures the pancreatic volume in patients with pancreatic cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助萤火采纳,获得10
刚刚
U9A关闭了U9A文献求助
1秒前
zzx发布了新的文献求助10
1秒前
12应助吴小胖采纳,获得10
2秒前
congenialboy完成签到,获得积分10
3秒前
打打应助沉默的宛筠采纳,获得10
3秒前
善学以致用应助刘振岁采纳,获得10
3秒前
黄芩完成签到 ,获得积分10
4秒前
慕青应助wy采纳,获得10
5秒前
昏睡的飞机完成签到,获得积分10
7秒前
8秒前
9秒前
希望天下0贩的0应助zzx采纳,获得10
9秒前
10秒前
十三完成签到,获得积分0
10秒前
英俊的铭应助激动的曼容采纳,获得10
11秒前
hahasun完成签到,获得积分10
11秒前
安静曼寒发布了新的文献求助20
13秒前
sam发布了新的文献求助10
14秒前
U9A发布了新的文献求助10
14秒前
14秒前
希望天下0贩的0应助阿洋采纳,获得10
14秒前
萤火发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
U9A关闭了U9A文献求助
19秒前
wy发布了新的文献求助10
20秒前
wym发布了新的文献求助30
22秒前
传奇3应助风中的爆米花采纳,获得10
23秒前
23秒前
CipherSage应助菜菜泽采纳,获得10
24秒前
阿洋完成签到,获得积分20
24秒前
阿洋发布了新的文献求助10
28秒前
上官可可发布了新的文献求助10
28秒前
wy完成签到,获得积分10
28秒前
duyitao关注了科研通微信公众号
29秒前
30秒前
Frank完成签到,获得积分10
30秒前
guard发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993569
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265160
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712