Uncertainty quantification and propagation in lithium-ion battery electrodes using bayesian convolutional neural networks

卷积神经网络 材料科学 不确定度量化 人工智能 不确定性传播 计算机科学 机器学习 算法
作者
Chance Norris,Abhinand Ayyaswamy,Bairav S. Vishnugopi,Carianne Martinez,Scott Alan Roberts,Partha P. Mukherjee
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103251-103251 被引量:5
标识
DOI:10.1016/j.ensm.2024.103251
摘要

The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lainghy完成签到,获得积分10
刚刚
2秒前
务实的小熊猫完成签到,获得积分10
3秒前
3秒前
Tokgo完成签到,获得积分10
4秒前
我是老大应助大胆的映萱采纳,获得10
4秒前
sun完成签到,获得积分10
4秒前
YunE完成签到,获得积分10
4秒前
蔡雯完成签到,获得积分10
4秒前
4秒前
单薄白晴完成签到,获得积分10
5秒前
天天快乐应助柔弱飞雪采纳,获得10
5秒前
山竹大王完成签到 ,获得积分10
5秒前
芋泥奶酪发布了新的文献求助10
6秒前
友好锦程发布了新的文献求助10
7秒前
Hello应助hyf采纳,获得10
7秒前
莫小北完成签到,获得积分20
9秒前
hhh关闭了hhh文献求助
9秒前
9秒前
10秒前
阳光完成签到,获得积分10
10秒前
HHHHHN完成签到,获得积分10
10秒前
明明不将就完成签到,获得积分10
11秒前
香蕉觅云应助告白气球采纳,获得10
12秒前
桐桐应助tifosi采纳,获得10
12秒前
14秒前
15秒前
ding应助苹果大福采纳,获得10
15秒前
15秒前
16秒前
小二郎应助一颗松采纳,获得10
16秒前
莫小北发布了新的文献求助10
16秒前
Lucas应助renwoxing采纳,获得10
17秒前
soapffz完成签到,获得积分0
18秒前
18秒前
19秒前
20秒前
赘婿应助亮仔采纳,获得10
20秒前
ZZH发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137