Uncertainty Quantification and Propagation in Lithium-ion Battery Electrodes using Bayesian Convolutional Neural Networks

卷积神经网络 材料科学 不确定度量化 人工智能 不确定性传播 计算机科学 机器学习 算法
作者
Chance Norris,Abhinand Ayyaswamy,Bairav S. Vishnugopi,Carianne Martinez,Scott Alan Roberts,Partha P. Mukherjee
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:: 103251-103251
标识
DOI:10.1016/j.ensm.2024.103251
摘要

The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
G1997完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
香蕉觅云应助土豆侠采纳,获得10
2秒前
3秒前
wenjian发布了新的文献求助10
3秒前
3秒前
上官若男应助钰钰yuyu采纳,获得10
4秒前
OOOorange完成签到,获得积分10
4秒前
一一应助优雅的母鸡采纳,获得110
4秒前
华仔应助糟糕的沂采纳,获得10
5秒前
xiaoxin完成签到,获得积分10
5秒前
赘婿应助开心的饼干采纳,获得10
5秒前
wangting发布了新的文献求助10
5秒前
6秒前
Placa发布了新的文献求助10
6秒前
充电宝应助栗子采纳,获得10
6秒前
炫炫炫发布了新的文献求助20
7秒前
7秒前
chanyed完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
科研1完成签到,获得积分20
8秒前
而与白醋发布了新的文献求助10
8秒前
寒冷一手完成签到,获得积分10
9秒前
11秒前
儒雅的夏山完成签到,获得积分10
11秒前
winner发布了新的文献求助10
11秒前
顾化蛹发布了新的文献求助10
11秒前
研友_VZG7GZ应助XBP采纳,获得10
11秒前
wanxin发布了新的文献求助10
12秒前
12秒前
AJ完成签到,获得积分10
12秒前
黑囡应助zzzz采纳,获得10
12秒前
dwhnx发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399