Uncertainty Quantification and Propagation in Lithium-ion Battery Electrodes using Bayesian Convolutional Neural Networks

卷积神经网络 材料科学 不确定度量化 人工智能 不确定性传播 计算机科学 机器学习 算法
作者
Chance Norris,Abhinand Ayyaswamy,Bairav S. Vishnugopi,Carianne Martinez,Scott Alan Roberts,Partha P. Mukherjee
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:: 103251-103251
标识
DOI:10.1016/j.ensm.2024.103251
摘要

The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzr123完成签到,获得积分10
2秒前
纯白发布了新的文献求助10
3秒前
不爱鱼香的rose完成签到,获得积分10
4秒前
4秒前
万能图书馆应助王欣瑶采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
星火完成签到,获得积分10
8秒前
Chenq1nss发布了新的文献求助10
8秒前
lvlv完成签到,获得积分10
9秒前
喜欢疲倦发布了新的文献求助30
10秒前
yyy完成签到,获得积分10
10秒前
11秒前
11秒前
daisy_chen发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
纯白完成签到,获得积分20
14秒前
华仔应助昵称采纳,获得10
15秒前
16秒前
16秒前
yyy发布了新的文献求助10
16秒前
梨小昆发布了新的文献求助10
16秒前
汉堡包应助小葛采纳,获得10
16秒前
读不完的文献啊完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350