Uncertainty quantification and propagation in lithium-ion battery electrodes using bayesian convolutional neural networks

卷积神经网络 材料科学 不确定度量化 人工智能 不确定性传播 计算机科学 机器学习 算法
作者
Chance Norris,Abhinand Ayyaswamy,Bairav S. Vishnugopi,Carianne Martinez,Scott Alan Roberts,Partha P. Mukherjee
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103251-103251 被引量:5
标识
DOI:10.1016/j.ensm.2024.103251
摘要

The complex nature of manufacturing processes stipulates electrodes to possess high variability with increased heterogeneity during production. X-ray computed tomography imaging has proved to be critical in visualizing the complicated stochastic particle distribution of as-manufactured electrodes in lithium-ion batteries. However, accurate prediction of their electrochemical performance necessitates precise evaluation of kinetic and transport properties from real electrodes. Image segmentation that characterizes voxels to particle/pore phase is often meticulous and fraught with subjectivity owing to a myriad of unconstrained choices and filter algorithms. We utilize a Bayesian convolutional neural network to tackle segmentation subjectivity and quantify its pertinent uncertainties. Otsu inter-variance and Blind/Referenceless Imaging Spatial Quality Evaluator are used to assess the relative image quality of grayscale tomograms, thus evaluating the uncertainty in the derived microstructural attributes. We analyze how image uncertainty is correlated with the uncertainties and magnitude of kinetic and transport properties of an electrode, further identifying pathways of uncertainty propagation within microstructural attributes. The coupled effect of spatial heterogeneity and microstructural anisotropy on the uncertainty quantification of transport parameters is also understood. This work demonstrates a novel methodology to extract microstructural descriptors from real electrode images through quantification of associated uncertainties and discerning the relative strength of their propagation, thus facilitating feedback to manufacturing processes from accurate image based electrochemical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdpb完成签到,获得积分10
刚刚
2秒前
lei发布了新的文献求助30
3秒前
jinyu完成签到,获得积分10
3秒前
WHITE发布了新的文献求助10
4秒前
上官若男应助土豪的龙猫采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
领导范儿应助wkkky采纳,获得10
8秒前
脑洞疼应助xwhl采纳,获得10
9秒前
杨咩咩发布了新的文献求助10
9秒前
10秒前
10秒前
爱吃粑粑发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
王权富贵发布了新的文献求助10
11秒前
xieyuan发布了新的文献求助10
11秒前
Lucas应助FlaKe采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
在下风爵完成签到,获得积分10
13秒前
纯真从寒发布了新的文献求助10
14秒前
mengtingmei完成签到,获得积分10
14秒前
14秒前
共享精神应助tingting采纳,获得10
14秒前
15秒前
蓝天应助坤舆探骊者采纳,获得10
15秒前
fengjingjing发布了新的文献求助10
15秒前
15秒前
lei完成签到,获得积分10
16秒前
Miya完成签到,获得积分10
16秒前
路宇鹏完成签到,获得积分10
20秒前
20秒前
YY完成签到,获得积分10
20秒前
wanci应助fengjingjing采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002