Research on intelligent identification algorithm of coal and rock strata based on Hilbert transform and amplitude stacking

堆积 地质学 振幅 火成岩岩石学 鉴定(生物学) 经济地质学 算法 希尔伯特变换 宝石学 区域地质 工程地质 矿物学 地震学 变质岩石学 计算机科学 光学 计算机视觉 工程类 物理 核磁共振 植物 滤波器(信号处理) 火山作用 生物 构造学 废物管理
作者
Pengqiao Zhu,Xianlei Xu,Suping Peng,Zheng Ma
出处
期刊:Geophysical Prospecting [Wiley]
卷期号:72 (5): 1764-1777
标识
DOI:10.1111/1365-2478.13483
摘要

Abstract The high precision identification of coal–rock layers is a significant challenge in intelligent mining. There is a large amount of electromagnetic noise and metal reflector signals in the full space detection environment of mining roadway, which makes it hard to distinguish the reflected waves at interface from a set of echo signals generated by the interface due to the similar amplitudes among them. So the method of identifying layers solely based on amplitude characteristics has poor stability and accuracy in coal mining environments. This paper proposes a method for identifying coal–rock layers based on Hilbert transform and tracking–scanning–stacking technology. There are two steps to achieve the recognition of air–coal–rock interfaces. First, by analysing the instantaneous amplitude spectrum obtained from the Hilbert transform, the first extreme point that is always the maximum value within a wavelength range is determined as the rough position of the air–coal interface. To solve the problem of recognition errors caused by noise and energy dispersion, the density difference method is used to remove discrete points. Second, the precise position of the air–coal interface is determined by tracking the extreme points within the 1.5 wavelength range around the rough position, and using the amplitude stacking method to quantitatively analyse and compare the degree of energy concentration. The data between zero time and the reflected waves at the air–coal interface is removed to avoid the impact of them on the recognition of the coal–rock interface. Results of physical model experiments and actual coal mine experiments show that this method yields better results and has high stability compared to conventional recognition method. Moreover, the average relative thickness errors are 4.5% for air layer and 4.2% for coal layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林甜甜很甜完成签到,获得积分10
1秒前
1秒前
不科学的呵呵完成签到,获得积分10
2秒前
fxfcpu发布了新的文献求助30
3秒前
shinysparrow应助ljm采纳,获得100
4秒前
Xu发布了新的文献求助10
6秒前
Akim应助Tabby采纳,获得10
9秒前
9秒前
CY完成签到 ,获得积分10
9秒前
10秒前
彪壮的未来完成签到,获得积分10
11秒前
文静幻枫完成签到 ,获得积分10
13秒前
14秒前
15秒前
11冰之泪完成签到,获得积分10
15秒前
16秒前
Ava应助执着牛青采纳,获得10
16秒前
李键刚完成签到 ,获得积分10
17秒前
18秒前
木木198022完成签到,获得积分10
18秒前
20秒前
胖头鱼发布了新的文献求助10
20秒前
Singularity应助嗑瓜子传奇采纳,获得10
20秒前
嘉子发布了新的文献求助10
21秒前
夏凛完成签到 ,获得积分10
21秒前
22秒前
芝芝发布了新的文献求助10
23秒前
不配.应助科研通管家采纳,获得20
24秒前
大个应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
体贴映阳应助科研通管家采纳,获得10
24秒前
彭大应助科研通管家采纳,获得10
25秒前
小花妹妹应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244