TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion

马修斯相关系数 自编码 编码器 变压器 水准点(测量) 致病性 机器学习 人工神经网络 模式识别(心理学) 生物 支持向量机 人工智能 计算机科学 工程类 地理 电压 电气工程 操作系统 微生物学 大地测量学
作者
Zihao Yan,Fang Ge,Yan Liu,Yumeng Zhang,Fuyi Li,Jiangning Song,Dong‐Jun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (4): 1407-1418 被引量:11
标识
DOI:10.1021/acs.jcim.3c02019
摘要

Studying the effect of single amino acid variations (SAVs) on protein structure and function is integral to advancing our understanding of molecular processes, evolutionary biology, and disease mechanisms. Screening for deleterious variants is one of the crucial issues in precision medicine. Here, we propose a novel computational approach, TransEFVP, based on large-scale protein language model embeddings and a transformer-based neural network to predict disease-associated SAVs. The model adopts a two-stage architecture: the first stage is designed to fuse different feature embeddings through a transformer encoder. In the second stage, a support vector machine model is employed to quantify the pathogenicity of SAVs after dimensionality reduction. The prediction performance of TransEFVP on blind test data achieves a Matthews correlation coefficient of 0.751, an F1-score of 0.846, and an area under the receiver operating characteristic curve of 0.871, higher than the existing state-of-the-art methods. The benchmark results demonstrate that TransEFVP can be explored as an accurate and effective SAV pathogenicity prediction method. The data and codes for TransEFVP are available at https://github.com/yzh9607/TransEFVP/tree/master for academic use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助孙波采纳,获得10
1秒前
TRY发布了新的文献求助10
1秒前
秋水发布了新的文献求助30
3秒前
3秒前
科研发布了新的文献求助10
3秒前
3秒前
4秒前
科研小白完成签到,获得积分10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
丁浩伦应助大气的黑夜采纳,获得10
6秒前
蓝天应助大气的黑夜采纳,获得10
6秒前
鸣笛应助科研通管家采纳,获得30
6秒前
leaolf应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
CR7应助科研通管家采纳,获得20
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
在水一方应助小李采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
xzn1123应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得30
8秒前
鸣笛应助科研通管家采纳,获得30
8秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547536
求助须知:如何正确求助?哪些是违规求助? 3978400
关于积分的说明 12318973
捐赠科研通 3647008
什么是DOI,文献DOI怎么找? 2008488
邀请新用户注册赠送积分活动 1044026
科研通“疑难数据库(出版商)”最低求助积分说明 932617