自相关
自回归模型
曲面(拓扑)
机械
物理
数学
几何学
统计
作者
Fei-Chi Zhang,Jin-Han Xie,Song Xi Chen,Xiaojing Zheng
摘要
We construct an autoregressive moving average (ARMA) model consisting of the history and random effects for the streamwise velocity fluctuation in boundary-layer turbulence. The distance to the wall and the boundary-layer thickness determine the time step and the order of the ARMA model, respectively. Based on the autocorrelation's analytical expression of the ARMA model, we obtain a global analytical expression for the second-order structure function, which asymptotically captures the inertial, dynamic and large-scale ranges. Specifically, the exponential autocorrelation of the ARMA model arises from the autoregressive coefficients and is modified to logarithmic behaviour by the moving-average coefficients. The asymptotic expressions enable us to determine model coefficients by existing parameters, such as the Kolmogorov and the Townsend–Perry constants. A consequent double-log expression for the characteristic length scale is derived and is justified by direct numerical simulation data with $Re_\tau \approx 5200$ and field-measured neutral atmospheric surface layer data with $Re_\tau \sim O(10^6)$ from the Qingtu Lake Observation Array site. This relation is robust because it applies to $Re_\tau$ from $O(10^4)$ to $O(10^6)$ , and even when the statistics of natural ASL deviate from those of canonical boundary-layer turbulence, e.g. in the case of imbalance in energy production and dissipation, and when the Townsend–Perry constant deviates from traditional values.
科研通智能强力驱动
Strongly Powered by AbleSci AI